高溫空氣流量計 耐高溫350度
高溫空氣流量計是利用熱傳導原理測流量的儀表。該儀表采用恒溫差法對氣體質量流量進行準確測量。具有體積小、數字化程度高、安裝方便,測量準確等優點。
傳感器部分由兩個基準級鉑電阻溫度傳感器組成。采用橋式環路,一個傳感器測量流量溫度,另一個傳感器維持高于流體溫度的恒溫差,可以在高溫和高壓條件下進行流量測量。
高溫空氣流量計具有如下技術優勢:
Ø 真正的質量流量計,對氣體流量測量無需溫度和壓力補償,測量方便準確??傻玫綒怏w的質量流量或者標準體積流量。
Ø 寬量程比,可測量流速高至100Nm/s底至0.5Nm/s的氣體,可以用于氣體 檢漏。
Ø 抗震性能好使用壽命長。傳感器無活動部件和壓力傳感部件,不受震動對測量精度的影響。
Ø 安裝維修簡便。在現場條件允許的情況下,可以實現不停產安裝和維護。(請參見安全注意事項)
Ø 數字化設計。整體數字化電路測量,測量準確、維修方便。
Ø 采用RS-485通訊,或HART通訊,可以實現工廠自動化、集成化。
高溫空氣流量計原理:
渦街流量計是根據“卡門渦街”原理研制成的流體振蕩式流量測量儀表。在一定雷諾數范圍內旋渦的分離頻率與旋渦發生體的幾何尺寸、管道的幾何尺寸有關,旋渦的頻率正比于流量,其結構原理如圖1所示。
渦街流量計所測量的是旋渦發生體兩側的平均速度u1,而反映被測流量的是管道中的平均流速u,它們之間的關系式為
式中:f為旋渦頻率,Hz;Sr為斯特勞哈爾數;u1為發生體兩側的平均流速,m/s;d為發生體迎流面的寬度,m;u為被測介質來流的平均流速,m/s;m為旋渦發生體兩側弓形面積與管道橫截面面積之比,不可壓縮流體中,由于流體密度ρ不變,由連續性方程可得到m=u/u1。
由此可得體積流量為
式中K為渦街流量計的儀表系數,1/m3。
從式(3)可見,渦街流量計的儀表系數僅與其機械結構和斯特勞哈爾數相關,與來流流量無關。而K又表征著渦街流量計的計量特性,在下文中,重點分析在各種不同流體介質條件下K的變化規律。
2、理論分析與計算:
空氣對渦街流量計計量特性的影響主要有如下3個因素:首先從式(3)中可以看出,影響K值大小的因素主要有機械結構尺寸D、m、d和斯特勞哈爾數Sr4個變量.從渦街流量計基本原理上分析,在不同流體介質條件下,機械結構尺寸的變化主要是由于溫度的變化帶來的熱脹冷縮引起,其次不同流體可壓縮性的差異也會導致儀表系數的偏差。此外Sr受雷諾數的影響,而雷諾數又受黏度的影響,流體的不同帶來黏度的不同,根據相關的研究黏度對渦街流量計儀表系數的影響可以忽略。下文主要分析前2個因素對華云蒸汽流量計的影響。
2.1、溫度的影響:
對圖1所示發生體,得到m的計算公式為
對流體流通面積而言,可以把旋渦發生體看作為矩形(寬為d,長為D,見圖1),面積比為
將式(5)帶入式(3)中得
相關的研究表明,當渦街流量計發生體為圖1所示形狀時,在d/D=0.28時,產生的旋渦強度和旋渦的穩定性好,故取d/D=0.28代入式(6)中得
由金屬材料的線性膨脹公式得
Dt=D20[1+α(t−20)] (8)
式中:Dt為殼體溫度為t的直徑;D20為20℃時殼體的直徑;α為材料線性膨脹系數。
將式(8)帶入式(7)中得到由于溫度變化而引起的儀表系數的變化為
發生體和殼體為不銹鋼材質(1Crl8Ni9Ti),在20~300℃時線性膨脹系數α為16.6×10-6,將α和不同溫度下的Kt帶入式(9)中得到數據如表1所示。
在表1中,Kt/K20表示溫度為t和20℃時儀表系數之比,表示溫度為t時儀表系數的相對變化量,即由于蒸汽溫度的不同所引入的計量偏差,由此計算分析可以看出溫度對機械結構尺寸的變化引起對儀表系數K的影響,隨著溫度的升高,造成的計量偏差也越來越大。