一、儀器概述
HDRZ-3000變壓器繞組變形測試儀根據對變壓器內部繞組特征參數的測量,采用內部故障頻率響應分析(FRA)方法,能對變壓器內部故障作出準確判斷。
變壓器設計制造完成后,其線圈和內部結構就確定下來,因此對一臺多繞組的變壓器線圈而言,如果電壓等級相同、繞制方法相同,則每個線圈對應參數(Ci、Li)就應該是確定的。因此每個線圈的頻域特征響應也隨之確定,對應的三相線圈之間其頻率圖譜具有一定可比性。
變壓器在試驗過程中發生匝間、相間短路,或在運輸過程中發生沖撞,造成線圈相對位移,以及運行過程中在短路和故障狀態下因電磁拉力造成線圈變形,就會使變壓器繞組的分布參數發生變化。進而影響并改變變壓器原有的頻域特征,即頻率響應發生幅度變化和諧振頻點偏移等。并根據響應分析方法研制開發的變壓器繞組測試儀,就是這樣一種新穎的變壓器內部故障無損檢測設備。它適用于63kV~500kV電力變壓器的內部結構故障檢測。
HDRZ-3000變壓器繞組變形測試儀是將變壓器內部繞組參數在不同頻域的響應變化經量化處理后,根據其變化量值的大小、頻響變化的幅度、區域和頻響變化的趨勢,來確定變壓器內部繞組的變化程度,進而可以根據測量結果判斷變壓器是否已經受到嚴重破壞、是否需要進行大修。
對于運行中的變壓器而言,無論過去是否保存有頻域特征圖,通過比較故障變壓器線圈間特征圖譜的差異,也可以對故障程度進行判斷。當然,如果保存有一套變壓器原有的繞組特征圖,更易對變壓器的運行狀況、事故后分析和維護檢修提供更為精確有力的依據。
變壓器繞組變形測試儀由筆記本電腦及單片機構成高精度測量系統,結構緊湊,操作簡單,具有較完備的測試分析功能,對照使用說明書或經過短期培訓即可自行操作使用。
二、 技術特點
1、采集控制采用高速、高集成化微處理器。
2、筆記本電腦與儀器之間通信USB接口。
3、使用工控機與測量儀器一體化,在測量現場不需使用移動電腦。
4、硬件機芯采用DDS數字高速掃頻技術(美國),通過測試可以準確診斷出繞組發生扭曲、鼓包、移位、傾斜、匝間短路變形及相間接觸短路等故障。
5、高速雙通道16位A/D采樣(現場試驗改變分接開關,波形曲線有明變化)。
6、信號輸出幅度軟件調節,大幅度峰值±10V。
7、計算機將檢測結果生成電子文檔(Word)
8、儀器具有線性掃頻測量和分段掃頻測量雙測量系統功能,兼容當前國內兩種技術流派的測量模式
9、幅頻特性符合國家關于幅頻特性測試儀的技術指標。橫坐標(頻率)具有線性分度及對數分度兩種,因此打印出的曲線可以是線性分度曲線也可以是對數分度曲線,用戶可根據實際需要選用。
10、檢測數據自動分析系統,
橫向比較A、B 、C三相之間進行繞組相似性比較,
其分析結果為:
①*性很好
②*性較好
③*性較差
④*性很差,
縱向比較A-A、B-B、C-C調取原數據與當前數據同相之間進行繞組變形比較,
其分析結果為:
①正常繞組
②輕度變形
③中度變形
④嚴重變形
11、可自動生成Word電子文檔,供保存和打印。
12、該儀器*電力標準DL/T911-2004《電力變壓器繞組變形的頻率響應分析法》的技術條件。
三、 主要技術參數
3.1 掃描方式:
1. 1、線性掃描分布
掃頻測量范圍:(10Hz)-(10MHz)40000掃頻點、分辨率為0.25kHz、0.5kHz和1kHz。
2. 分段掃頻測量分布
掃頻測量范圍:(0.5kHz)-(1MHz)、2000掃頻點;
(0.5kHz)-(10kHz)
(10kHz)-(100kHz)
(100kHz)-(500kHz)
(500kHz)-(1000kHz)
3.2其他技術參數
1. 幅度測量范圍: (-120dB)至(+20dB)
2. 幅度測量精度: 0.1dB
3. 掃描頻率精度: 0.01%
4. 信號輸入阻抗:1MΩ
5. 信號輸出阻抗:50Ω
6. 信號輸出幅值:±20V
7. 同相測試重復率:99.9%
8. 測量儀器尺寸(長寬高)300X340X120(mm)
9. 儀器鋁合金箱尺寸(長寬高)310X400X330(mm)
10.總體重量:10Kg
監控中心監控軟件具備身份認證、遠程更新程序的功能,具備完善的更新機制與方式;具備按遠程指令修改采集頻率、采樣時間間隔、IP地址、端口號等參數的能力;具備動態響應遠程時間查詢/設置、數據請求、重啟等指令的能力;并且能按遠程指令進入遠程調試模式,并輸出相關調試信息。輸電線路導線(風偏、舞動、弧垂)在線監測系統的運用不僅可以減少傳統人工1的所不能實時檢測到的線路使輸電線路安全運行更加智能化,準確化,保障了輸電線路安全運行發電企業正面臨著*的深刻變化:電力市場化、業務流程重組、管控一體化…… 這些變化改變了電廠企業運作的規律;另一方面,新技術不斷涌現并迅速應用于發電企業,如現場總線控制技術、信息技術等。數字化電廠(e- power plant)概念的出現,為發電企業提供了現代化生產管理的新思路。在電廠控制系統和安全高效的網絡平臺、數據庫平臺基礎上,基于多新 的理論和研究成果整合電廠管控一體化系統,用的管理思想和信息技術對電廠的經營和生產管理系統進行全面設計,使信息技術與工業技術、管理技術全面融 合,全面提升電廠的生產和管理水平,增強企業競爭力。發電企業的計算機應用已經滲透到企業的各個環節,包括到生產控制自動化,經營管理決策等各個方面。近年來,電廠自動化系統正在從單元級、機組控制級向系統級、集成級方向發展。隨著電廠自動化應用范圍的不斷拓廣,電廠自動化系統本身與應用多樣化的適配性, 伴隨電廠DEH/DCS等自動化系統的產生和發展,這些控制系統的應用為電廠的自動化運行發揮了重要作用。然而長期以來,這些控制系統自成系統,孤立運 行,數據得不到共享,電廠是一個各專業相互協調的復雜系統,必然要求電廠具有一個整體的自動化系統協調控制全廠設備的運行,廠級監控信息系統(SIS)又 為電廠自動化生產管理提供了新的思路。
對電廠的經營管理者來講,為適應未來電力市場的實時變壓器繞組變形分析儀 電力工程適用因此對一臺競價的要求,必須實現機、電、爐的全局數據共享,電力自動化生產和計算機綜合管理一體化是必然的趨勢。如何將這些能夠*的整合在一起,一個統一的網絡通訊平臺就成為必需。而在傳統的電廠中一般都建立了為,財務等應用服務的局域網,新型的網絡系統即要 務系統的網絡互連和數據交換,同時要求生產網絡和辦公網絡能夠有相應的隔離機制,保證生產網絡能夠多大限度的可靠安全的運行,如何解決這些要求將 是現代化電廠組建網絡的多大挑戰。電廠應用分析根據以上的系統化的建設要求,現代電力企業應該以下面兩大方面的應用為導向來建立新型的網絡通訊平臺。
電廠自動化生產系統這些系統包括:配電網廣變壓器繞組變形分析儀 電力工程適用因此對一臺域測控體系,簡稱配網測控體系(Distribution M easurement and Control Infrastructure,DMACI),包括IP通信網絡與主站、現場終端中的數據采集、數據管理、通信等技術內容,可為主站、DIC與終端中的ADA應用軟件提供配電網運行數據采集、數據傳輸與管理服務。