Orbit mini是一款小型的脂雙層工作站,可同時記錄四個人工脂雙層。
Orbit mini的主要特點有:
- 到手可用、占地極小的獨立系統
- 內置四通道低噪音放大器
- 可選的溫度控制附件 - 自動制冷與加熱
- 低噪音高帶寬記錄
- 通量提高到四通道
- 附帶專用記錄軟件
- 目標蛋白可直接插入和通過蛋白脂質體插入
- 可記錄: 電壓、配體門控離子通道、溫度敏感離子通道
- 也可記錄納米孔、Antibacterial肽、毒素等...
- 低實驗成本的MECA芯片
Orbit mini包含一個內置的小型化四通道放大器,可在高帶寬下進行低噪音記錄而不需要其他設備輔助 – 可以在任何環境下進行實驗。此外的設計使得測量室的溫度可以自由控制而不會導入額外的噪音。
完整的Orbit mini平臺包含內置四通道放大器(Elements s.r.l.)的記錄單元和選配的可制熱和制冷的溫度控制單元。并使用Ionera公司的 MECA 4記錄芯片涂抹磷脂并同時進行四個脂雙層記錄。
溫度控制單元
使用溫度控制單元,芯片上的溫度可以在0°C到50°C之間變化,因為它包含主動冷卻和主動加熱功能。
Orbit mini:PEG誘導的α溶血素孔電流阻斷的溫度控制
(A) 在10°C和40°C下記錄的電流軌跡表明,在高溫下,開孔電流和堵塞頻率顯著增加。(B) 阻塞期間剩余電流的事件平均直方圖。開孔電流隨堵塞物的溫度和停留時間而變化。(C) 開孔電流與溫度的關系。
(D) 堵塞頻率與溫度的關系。
The image war kindly provided by Ionera Technologies GmbH
Orbit mini熒光顯像附件
For fluorescence applications, the Orbit mini can be equipped with the "Fluorescence Microscopy Kit" which includes an adapted faraday shielding as well as "Meca 4 Recording Chips Fluo", four-well recording chips for fluorescence applications with 150 μm cavity size (Order # 132004).
Orbit mini EDR 軟件
MECA 4 記錄芯片
MECA記錄基板在高惰性聚合物中包含2 x 2圓形微腔陣列。每個腔體包含一個單獨的集成Ag/AgCl微電極。雙分子層是通過涂漆形成的,功能性雙分子層的成功率很高。MECA芯片已通過多種不同的離子通道驗證,包括KcsA、gramicidin、α-溶血素、KV1.3、NaV等。
Available chip types
- "Meca 4 Recording Chips 50 μm": Four-well recording chip with 50 μm cavity size (Order # 132001)
- "Meca 4 Recording Chips 100 μm": Four-well recording chip with 100 μm cavity size (Order # 132002)
- "Meca 4 Recording Chips 150 μm": Four-well recording chip with 150 μm cavity size (Order # 132003)
- "Meca 4 Recording Chips Fluo": Four-well recording chip for fluorescence applications with 150 μm cavity size (Order # 132004)
數據與應用:
Alpha-Hemolysin - Temperature Control
Orbit mini and applications:
Data were kindly provided by Ionera.
Temperature control of the Orbit mini: PEG induced current blockages of a alpha-hemolysin pore
(A) Current traces recorded at 10°C and 40°C illustrating a strong increase of the open pore current as well as the blockage frequency at elevated temperature.
(B) Event averaged histograms of the residual current during blockages. The open pore current scales with the temperature as well as the dwell time of the blockages.
(C) Dependence of the open pore current on the temperature.
(D) Dependence of the frequency of blockages on the temperature.
OccK1 - Outer Membrane Protein of the Pathogenic Bacterium Pseudomonas Aeruginosa
Orbit mini and applications:
Data were kindly provided by Ionera.
Representative recording from a single OmpF trimer showing current blocks due to the translocation of antibiotic Enrofloxacin, event averaged histogram.
Conditions: 150 mM KCl, 5 mM MES, pH 6, 10 mM enrofloxacin, + 60 mV
OmpF - Current block
Orbit mini and applications:
Data were kindly provided by Ionera.
Representative recording from a single OmpF trimer showing current blocks due to the translocation of antibiotic Enrofloxacin, event averaged histogram.
Conditions: 150 mM KCl, 5 mM HEPES, 5 mM MES, pH 6, 10 mM enrofloxacin, +60 mV
TRPA1 - Temperature Dependency
Orbit mini data and applications:
(A) Effect of temperature on TRPA1 activity
(B) The open probability (Po) versus the temperature and fitted with Boltzmann equation (EC50 was found at 14?C).
The Arrhenius plot of the same data resulted in a Q10 of 46 (Literature: Q10 ~ 40).
VDAC - Application of Fluoxetine
Orbit mini and applications:
Data were kindly provided by Ionera.
Current recordings of single VDA channels from selected bilayers in parallel.
VDAC was reconstituted in DPhPC membranes and partially blocked upon the addition of Fluoxetine (Prozac).
(A) Representative parallel recording from 3 VDAC channels in DPhPC membranes. Conditions: 1 M KCl, 25 mM Tris, pH 7,5, voltage change protocol is given below.
(B) Current trace illustration partial blocade of VDAC by Fluoxetine (Prozac).
(C) Current-voltage trace of a single VADC channel under a ramping voltage of -70/+70 mV before (green) and after (blue) addition of 50 μm Fluoxetine
Purified VDAC sample is a generous gift from Prof. Stephan Nussberger to Ionera, Department Biophysics, University of Stuttgart, Germany
發表文獻:
2021 - Saccharomyces cerevisiae as a superior host for overproduction of prokaryotic integral membrane proteins
2021 - Rapid and multiplex preparation of engineered Mycobacterium smegmatis porin A (MspA) nanopores for single molecule sensing and sequencing
2021 - Design, assembly, and characterization of membrane-spanning DNA nanopores
2021 - ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels