zeta電位及納米粒度儀內容解析參考如下:
儀器型號:Z3000 Basic
工作原理:
粒度分布:動態光散射儀(Dynamic Light Scattering, DLS)
ZETA電位:多普勒電泳光散射原理(Doppler Electrophoretic Light Scattering, DELS)
檢測范圍:
粒徑范圍 0.3nm-10.0μm
ZETA電位 +/- 500mV
Nicomp 380 Z3000系列納米激光粒度儀是在原有的經典型號380ZLS&S基礎上升級配套而來,采用動態光散射(Dynamic Light Scattering, DLS)原理檢測分析顆粒的粒度分布,同機采用多普勒電泳光散射原理(Doppler Electrophoretic Light Scattering, DELS)檢測ZETA電位。粒徑檢測范圍 0.3nm – 10μm,ZETA電位檢測范圍為+/- 500mV。其配套粒度分析軟件復合采用了高斯( Gaussian)單峰算法和擁有技術的 Nicomp 多峰算法,對于多組分、粒徑分布不均勻分散體系的分析具有優勢。ZETA電位模塊使用雙列直插式方形樣品池和鈀電極,一個電極可以使用成千上萬次。另外,采用可變電場適應不同的樣品檢測需求。既保證檢測精度,亦幫用戶大大節省檢測成本。
技術優勢
1、PMT高靈敏度檢測器;
2、可搭配不同功率光源;
3、雙列直插式電極和樣品池,可反復使用成千上萬次;
4、鈀電極;
5、精確度高,樣品真實值;
6、復合型算法:
高斯(Gaussion)單峰算法與的Nicomp多峰算法自由切換
相位分析法(PALS)和頻譜分析法(FALS)自由切換
7、快速檢測,可以追溯歷史數據;
8、結果數據以多種形式和格式呈現;
9、符合USP,CP等個多藥典要求;
10、無需校準;
11、復合型算法:
(1)高斯(Gaussion)單峰算法與的Nicomp多峰算法自由切換
12、模塊化設計便于維護和升級;
(1)可自動稀釋模塊(選配);
(2)搭配多角度檢測器(選配);
(3)自動進樣系統(選配);
Nicomp多峰分布概念
基線調整自動補償功能和高分辨率多峰算法是Nicomp 380系列儀器所的兩個主要特點,Nicomp創始人Dave Nicole很早就認識到傳統的動態光散射理論僅給出高斯模式的粒度分布,這和實踐生產生活中不相符,因為現實中很多樣本是多分散體系,非單分散體系,而且高斯分布靈敏性不足,分辨率不高,這些特點都制約了納米粒度儀在實際生產生活中的使用。其開創性的開創了Nicomp多峰分布理論,大大提高了動態光散射理論的分辨率和靈敏性。
圖一:Nicomp多分分布數據呈現
如圖一:此數據為Nicomp創始人Dave Nicole親測其血液所得的真實案例。其檢測項目為:高密度脂蛋白,低密度脂蛋白和超低密度脂蛋白,由圖中可以看出,其血液中三個組分的平均粒徑分別顯示在7.0nm;29.3nm和217.5nm。由此可見,Nicomp分布模式可以有效反應多組分體系的粒徑分布。
Nicomp多峰分布優勢
Nicomp系列儀器均可以自由在Gaussian分布模式和Nicomp多峰分布模式中切換。其不僅可以給出傳統的DLS系統的結果,更可以通過Nicomp多峰分布模式體現樣品的真實情況。依托于Nicomp系列儀器一系列優異的算法和高靈敏性的硬件設計,Nicomp納米激光粒度儀可以有效區分1:2的多分散體系。
圖二:高斯分布及Nicomp多峰分布對比圖
如圖二:此數據為檢測93nm和150nm的標粒按照1:2的比例混合后所測得的數據。左邊為高斯分布(Gaussian)結果,右圖為Nicomp多峰分布算法結果,兩者都為光強徑數據。從高斯分布可以得到此混合標粒的平均粒徑為110nm-120nm之間,卻無法得到實際的多組分體系結構。從右側的Nicomp多峰分布可以得到結果為雙峰,即如數據呈現,體系中的粒子主要分布于98.2nm以及190nm附近,這和實際情況相符。
為滿足不同客戶的實際檢測需求,我司的Nicomp 380 N3000會配備相應的配置,旨在為客戶們在控制成本的基礎上,得到需求的解決方案,達到收益。
產品優勢
模塊化設計
Nicomp 380納米激光粒度儀是在應用動態光散射技術上的基礎上加入多模塊方法的*粒度儀。隨著模塊的升級和增加,Nicomp 380的功能體系越來越強大,可以用于各種復雜體系的檢測分析。
自動稀釋模塊(選配)
帶有的自動稀釋模塊消除了人工稀釋高濃度樣品帶來的誤差,且不需要人工不斷試錯來獲得合適的測試濃度,這大大縮短了測試者寶貴時間,且無需培訓,測試結果重現性好,誤差率<1%。
380/HPLD大功率激光器
美國PSS粒度儀公司在開發儀器的過程中,考慮到在各種實驗測試條件中不同的需求,對不同使用條件和環境配置了不同功率的激光發生器。大功率的激光器可以對極小的粒子也能搜集到足夠的散射信號,使得儀器能夠得到極小粒子的粒徑分布。同樣,大功率激光器在測試大粒子的時候同樣也很有幫助,比如在檢測右旋糖酐大分子時,折射率的特性會引起光散射強度不足。
因為大功率激光器的特性,會彌補散射光強的不足和衰減,測試極其微小的微乳、表面活性劑膠束、蛋白質以及其他大分子不再是一個苛刻的難題。即使沒有色譜分離,Nicomp 380納米粒徑分析儀甚至也可以輕易估算出生物高分子的聚集程度。
雪崩二極管 (APD)高靈敏度檢測器(選配)
Nicomp 380納米粒徑分析儀可以裝配各種大功率的激光發生器和雪崩二極管檢測器(相比較傳統的光電倍增管有3-5倍放大增益效果)。
APD通常被用于散射發生不明顯的體系里來增加信噪比和敏感度,如蛋白質、不溶性膠束、濃度極低的體系以及大分子基團,他們的顆粒的一般濃度為1mg/mL甚至更低,這些顆粒是由對光的散射不敏感的原子組成。APD外置了一個大功率激光發生器模塊,在非常短的時間內就能檢測分析納米級顆粒的分布情況。
380/MA多角度檢測器(選配)
粒徑大于100 nm的顆粒在激光的照射下不會朝著各個方向散射。多角度檢測角器通過調節檢測角度來增加粒子對光的敏感性來測試某些特殊級別粒子。Nicomp 380可以配備范圍在10°-175,步長0.7°的多角度測角器,從而使得單一90°檢測角測試不了的樣品,通過調節角度進行檢測,改善對大粒子多分散系粒徑分析的精確度。
目錄結構:
1.前言
2.動態光散射原理
3.動態光散射理論:光的干涉
小知識:光電倍增管(PMT)
小知識:光電二極管(APD)
5.粒子的擴散效應
6.Stoke-Einstein方程式
7.ZETA電勢電位原理
前言
近十幾年來,動態光散射技術(Dynamic Light scattering, DLS),也被稱為準彈性光散射(quasi-elastic light scattering, QELS)或光子相關光譜法(photon correlation spectroscopy, PCS),已經被證明是表征液體中分散體系的粒徑分布(PSD)的極有用的分析工具。DLS技術的有效檢測粒徑范圍——從5am(0.005微米)到10幾個微米。DLS技術的優勢相當明顯,尤其是當檢測到300nm以下亞微米的粒徑范圍時,在此區間,其他的技術手段大部分都已經失效或者無法得到準確的結果。因此,基于DLS理論的設備儀器被廣泛采用用以表征特定體系的粒度分布,包括合成的高分子聚合物(如乳膠,PVCs等),水包油和油包水的乳劑,囊泡,膠團,微粒,生物大分子,顏料,燃料,硅土,金屬晶體,陶瓷和其他的膠體類混懸劑和分散體系。
動態光散射原理
下圖所示為DLS系統的簡單的示意圖。激光照射到盛有稀釋的顆?;鞈乙旱牟Aг嚬苤?。此玻璃試管溫度恒定,每一個粒子被入射光擊發后向各個方向散射。散射光的光強值和粒徑的分子量或體積(在特定濃度下)成比例關系,再帶入其他影響參數比如折射率,這就是經典光散射(Classic light scattering)的理論基礎。
圖1:DLS系統示意圖
的動態光散射方法(DLS)從傳統的光散射理論中分離,不再關注于光散射的光強值,而關注于光強隨著時間的波動行為。簡單來說,我們在一定角度(一般使用90°角)檢測分散溶劑中的混懸顆粒的總體散射光信息。由于粒度的擴散,光強值不斷波動,理論上存在有非常理想化的波動時間周期,此波動時間和粒子的擴散速度呈反比例關系。我們通過光強值的波動自相關函數的計算來獲得隨時間變化的衰減指數曲線。從衰減時間常量τ,我們可以獲得粒子的擴散速度D。使用Stokes-Einstein 方程式,我們最終可以計算得出顆粒的半徑(假定其是一個圓球形狀)。
動態光散射理論:光的干涉
為了容易理解什么叫做強度隨時間波動,我們必須先理解相干疊加(coherent addition)或線性疊加(superposition)的概念,進一步要知道檢測區域內的不同的粒子產生了很多獨立散射光,這些獨立的散射光相干疊加或互相疊加的最終結果就是光強。這種物理現場被稱為“干涉”。下圖是光干涉圖樣。
每一束獨立的散射光波到達檢測器和入射激光波長有相位關系,這主要取決于懸浮液中顆粒的精確定位。所有的光波在PMT檢測器的表面的狹縫中混合在一起,或者叫干涉在一起,最終在特定的角度可以檢測得到“凈”散射光強值,在DLS系統中,絕大部分都使用90度角。
小知識——光電倍增管(PMT)
MT)
光電倍增管(Photomultiplier,簡稱PMT),是一種對紫外光、可見光和近紅外光極其敏感的特殊真空管。它能使進入的微弱光信號增強至原本的108倍,使光信號能被測量。
光電倍增管示意圖
小知識——光電二極管(APD)
光電二極管是由玻璃封裝的真空裝置,其內包含光電陰極 (photocathode),幾個二次發射極 (dynode)和一個陽極。入射光子撞擊光電陰極,產生光電效應,產生的光電子被聚焦到二次發射極。其后的工作原理如同電子倍增管,電子被加速到二次發射極產生多個二次電子,通常每個二次發射極的電位差在 100 到 200 伏特。二次電子流像瀑布一般,經過一連串的二次發射極使得電子倍增,最后到達陽極。一般光電倍增管的二次發射極是分離式的,而電子倍增管的二次發射極是連續式的。
應用
光電倍增管集高增益,低干擾,對高頻信號有高靈敏度的優點,因此被廣泛應用于高能物理、天文等領域的研究工作,與及流體流速計算、醫學影像和連續鏡頭的剪輯。雪崩光電二極管(Avalanche photodiodes,簡稱APDs)為光電倍增管的替代品。然而,后者仍在大部份的應用情況下被采用。
動態光散射理論: 粒子的擴散效應
懸浮的粒子并不是靜止不動的,相反,他們以布朗運動(Brownian motion)的方式無規則的運動,布朗運動主要是由于臨近的溶劑分子沖撞而引起的。因此,到達PMT檢測區的每一束散射光隨時間也呈無規則波動,這是由于產生散射光的粒子的位置不同而導致的無規則波動。因為這些光互相干涉在一起,在檢測器中檢測到的光強值就會隨時間而不斷波動。粒子很小的位移需要在相位上產生很大的變化,進而產生有實際意義的波動,最終這些波動在凈光強值上反應出來。
DLS測量粒徑技術的關鍵物理概念是基于粒子的波動時間周期是隨著粒子的粒徑大小而變化的。為了簡化這個概念,我們現在假定粒子是均一大小的,具有相同的擴散系數(diffusion coefficient)。分散體系中的小粒子運動的快,將會導致光強波動信號變化很快;而相反地,大粒子擴散地畢竟慢,導致了光強值的變化比較慢。
圖示4使用相同的時間周期來觀測不同大?。ㄐ?,中,大)的粒子產生的散射光強變化,請注意,橫坐標是時間t。
我們需要再次強調,光強的波動并不是因為檢測區域內粒子的增減引起的
而是大量的粒子的位置變動(位移)而引起的。
Stokes Einstein Equation
DLS技術的目標是從原始數據(raw data)中確定粒子的擴散系數“D”。原始數據主要是指光強信號的波動,比如上述圖4中所示。通過擴散系數D我們可以很容易的計算出粒子的半徑,這時候就是廣為人知的Stokes-Einstein方程式:
D=kT/6πηR (2)
這里k 指的是玻爾茲曼常數1.38 x 10-16 erg K-1;
T是溫度;
η是分散溶劑的額剪切粘度,比如20℃的水的η=1.002×10-2 泊;
從上述公式2中我們可以看到,通常情況下,粒子的擴散系數D會隨著溫度T的上升而增加。溫度進而也會影響溶劑粘度η。例如,純水的粘度在25℃下會落到0.890×10-2泊,和20℃下相比會有10%的改變。毫無疑問,溶劑的粘度越小,粒子的無規則擴散速度會越大,從而導致光強的波動也越快。因此,溫度T的變化和粒徑的變化是分不開的,因為他們都影響到了擴散系數D。正因為這個原因,樣本的溫度必須保持恒定,而且必須非常精確,這樣才能獲得有實際意義的擴散系數D。
從圖4的“噪聲”信號中無法直接提取出擴散系數。但是可以清楚地看到,信號b比信號c波動地快,但是比信號a波動地慢,因為,信號b地粒徑一定在a和c之間,這只是很直觀地得到一個結論而已。然而,量化此種散射信號是一個很專業地課題。幸而,我們有數學方法來解決這個問題,這就是自相關函數(auto-correlation)。
自相關函數原理
現在讓我們設定散射光強的自相關函數為IS(t),在上述圖4中可以看到其隨時間而波動。我們用C(t’)來標識自相關函數。C(t’)可以通過如下方程式3來表達:
C(t’)=< Is(t)*Is(t-t’) > (3)
括號< >表示有很多個t和對應的Is值。也就是說,一次計算就是運行很多Is(t)*Is(t-t’) 的加和,所有都具有相同的間隔時間段t’。
圖5是典型的Is(t)的波形圖,通過這張圖,我們可以認為C(t’)和Is(t)之間有簡單的比例關系,這張圖的意義在于通過C(t’)函數可以通過散射光強Is(t)的波動變化“萃取”出非常有用的信息。
自相關函數C(t’)其實是表征的不同大小的粒子隨時間而衰變的規律。
Zeta電勢電位原理
1.1 什么是ZETA電勢電位
1.2 STERN雙電子層
1.3 DLS散射系統是如何測ZETA電位的?
什么是ZETA電勢電位
Zeta電位(Zeta potential)是指剪切面(Shear Plane)的電位,又叫電動電位或電動電勢(ζ-電位或ζ-電勢),是表征膠體分散系穩定性的重要指標。
我們知道膠體系統中有兩個相,分散相和連續相,分散相在納米和亞微米之間。因為微粒的粒徑很小,因此它比表面積大從而有一些增強屬性使其穩定懸浮。但是如果微粒開始絮凝,微粒的粒徑改變,性能也可能發生變化,如果不加以控制,絮凝體也可能進一步團聚形成沉淀,接著就會相位分離。當我們建立穩定分散體系時,我們需要維持微粒的穩定與分散,其中一個方法就是增強微粒表面電荷,然后這些微粒將帶偶極矩互相之間產生排斥,隨著微粒電荷的增加,微粒團聚而形成絮凝的幾率降低。讓微粒分散,帶正電荷還是帶負電荷并不重要,重要的是電荷的值。我們研究微粒表面電荷的方法就是Zeta電勢電位。
STERN雙電子層
圖 1膠團模型
膠核表面擁有一層離子,稱為電位離子,電位離子通過靜電作用,把溶液中電荷相反的離子吸引到膠核周圍,被吸引的離子稱為反離子,越靠近膠核表面的地方反離子越密集,相反,越遠的地方反離子越稀疏,他們的電荷總量與電位離子相等并且符號相反。因此,整個膠團是處于電中性狀態,而膠核表面電勢是的,根據定義Zeta電位即為膠核表面電勢。
圖 2 STERN雙電子層模型
STERN雙電子層即為膠核表面以及擴散層共同形成的電子層模型,值得注意的是擴散層中帶電離子是分布在連續相中,因此其與分散介質息息相關(例如:通過水分散的體系,擴散層離子濃度以及擴散層寬度與水有很大關聯),所以擴散層都沒有明確的邊界。
DLS散射系統如何測ZETA電位
目前測量ZETA電位的方法主要有電泳法、電滲法、流動電位法以及超聲波法。Nicomp Z3000采用的是主流的電泳法測試ZETA。
圖 3 儀器內部光路圖
圖3是Nicomp 380 Z3000設備內部的光路圖,激光通過一個分光器分成兩組光路,一組通過反射鏡直接進入檢測器,另一組經過一個可調節的濾光片后,再經由微粒散射進入到相關檢測器中。觀察兩組相干光的頻率變化或者相位變化,從而計算得出ZETA電勢電位。
從微觀角度來理解ZETA電位的計算,微粒由于帶電量或是帶點符號不同,其在電場作用下的運動狀態也會不同,這種運動狀態我們用電泳淌度μ(帶電離子在單位場強下的平均電泳遷移速率)來表征,我們通過檢測器觀察到的兩組相干光的頻率或是相位變化,結合電場強度,相干光波長等參數通過簡單的數學建模計算得出粒子的電泳淌度μ,最終ZETA電位通過公式:
換算得出。η為分散劑的剪切粘度,ε為分散劑的介電常數。
點擊下載工作原理
儀器參數
粒徑檢測范圍 | 0.3nm-10μm |
分析方法 | 動態光散射,Gaussian單峰算法和 Nicomp多峰算法 |
pH值范圍 | 1-14 |
溫度范圍 | 0℃-90 ℃ |
激光光源 | 15mW激光光源 |
檢測角度 | 90° |
檢測器 | APD(雪崩二極倍增管,可3-5倍增益放大) PMT(高性能光電檢測器) |
可用溶劑 | 水相,絕大多數有機相 |
樣品池 | 標準4 mL樣品池(1cm×4cm,高透光,石英玻璃或塑料); 1mL樣品池(玻璃,高透光率微量樣品池) |
分析軟件 | 必配科研級軟件; 符合 21 CFR Part 11 規范分析軟件(可選) |
驗證文件 | 有 |
電壓 | 220–240VAC,50Hz或100–120VAC,60Hz |
計算機配置要求 | Windows 7及以上版本windows操作系統,40Gb硬盤,2G內存,USB接口 |
外形尺寸 | 56 cm * 41 cm * 24cm |
重量 | 約26kg(與配置有關) |
配件
大功率激光二極管 | PSS使用一系列大功率激光二極管來滿足更多更苛刻的要求。使用大功率激光照射,以便從小粒子出貨的足夠的入射光。15mW, 35mW, 50mW, 100mW — 波長為635nm 的紅色二極管。20 mW 50 mW 和 100 mW 波長為 514.4nm的綠色二極管。 |
雪崩光電二極管檢測器 (APD Detector)(選配) | 提供比普通光電倍增管(PMT)高3-5倍的靈敏度。 |
自動稀釋系統模塊(選配) | 將初始濃度較高的樣本自動稀釋至可檢測的的濃度,可稀釋初始固含量為50%的原始樣品,本模塊收保護,其可免除人工稀釋樣品帶來的外界環境的干擾和數據上的誤差,此技術被用于批量進樣和在線檢測的過程中。 |
多角度檢測系統模塊(選配) | 提供多角度的檢測能力。使用高精度的步進電機和針孔光纖技術可對散射光的接收角度進行調整,可為微粒粒徑分布提供可高分辨率的多角度檢測。對高濃度樣品(≤40%)以及大粒子多分散系的粒徑提供了提供15至175度之間不同角度上散射光的采集和檢測。 |
自動進樣器(選配) | 批量自動進樣器能實現最多76個連續樣本的分析而無需操作人員的干預。因此它是一個非常好的質量控制工具,能增大樣品的處理量。大大節省了寶貴的時間。 |
樣品池 | 標準4 mL樣品池(1cm×4cm,高透光,石英玻璃或塑料);1mL樣品池(玻璃,高透光率微量樣品池,最小進樣量10μL) |
應用領域
納米載藥 | 納米藥物研究近些年主要著重在藥物的傳遞方向并發展迅猛,納米粒的大小可以有效減少毒性和副作用。所以,控制這些納米粒的粒徑大小是非常必要的。 |
磨料 | 磨料既有天然的也有合成的,用于研磨、切削、鉆孔、成形以及拋光。磨料是在力的作用下實現對硬度較低材料的磨削。磨料的質量取決于磨料的粗糙度和顆粒的均勻性。 |
化學機械拋光液(CMP SLURRY) | 化學機械拋光是半導體制造加工過程中的重要步驟。化學機械拋光液是由腐蝕性的化學組分和磨料(通常是氧化鋁、二氧化硅或氧化鈰)兩部分組成。拋光過程很大程度上取決于晶片表面構型。晶片的加工誤差通常以埃計,對晶片質量至關重要。拋光液粒度越均勻、不聚集成膠則越有利于化學機械拋光加工過程的順利進行。 |
陶瓷 | 陶瓷在工業中的應用非常廣泛,從磚瓦到生物科研材料及半導體領域。在生產加工過程中監測陶瓷顆粒的粒度及其粒度分布可以有效地控制最終產品的性能和質量。 |
粘土 | 粘土是一種含水細小顆粒礦物質天然材料。粉砂與粘土類似,但粉沙的顆粒比粘土大。粘土中易于混雜粉砂從而降低粘土的等級和使用性能。ISO14688定義粘土的顆粒小于63μm。 |
涂料 | 涂料種類繁多,用途廣泛。涂料的顆粒大小及粒度分布直接影響涂料的質量和性能。 |
污染物監測 | 粒度檢測分析在產品的污染監測方面起著重要作用,產品的污染對產品的質量影響巨大。絕大多數行業都有相應的標準、規程或規范,必須嚴格遵守和執行,以保證產品滿足質量要求。 |
化妝品 | 無論是普通化妝品還是保濕劑、止汗劑,它們的性能都直接與粒度的大小和分布有關?;瘖y品的顆粒大小會影響其在皮膚表面的涂抹性能、分布均勻性能以及反光性能。保濕乳液(一種乳劑)的粒度小于200納米時才能被皮膚良好吸收,而止汗劑的粒度只有足夠大時才能阻塞毛孔起到止汗的作用。 |
乳劑 | 乳劑是兩種互不相溶的液體經乳化制成的非均勻分散體系,通常是水和油的混合物。乳劑有兩種類型,一種是水分散在油中,另一種是油分散在水中。常見的乳劑制品有牛奶(水包油型)和黃油(油包水型),加工過程中它們均需均質化處理到所需的粒徑大小以期延長保質期。 |
食品 | 食品的原料(粉末及液體)通常來源于不同的加工廠,不同來源的原料必須滿足某些特定的標準以使最終制品的質量均一穩定。原料性質的任何波動都會對食品的口味和口感產生影響。用原料的粒度分布作為食品質量保證和質量控制(QA/QC)的一個指標可確保生產出質量均以穩定的食品制品。 |
液體工作介質/油 | 液體工作介質(如:油)越來越昂貴,延長液體介質的壽命是目前普遍關心的問題。機械設備運轉過程中會產生金屬屑或顆粒落入工作介質中(如:油浴潤滑介質或液力傳遞介質),因此需要一種方法來確定介質(油)的更換周期。通過監測工作介質(油)中顆粒的分布和變化可以確定更換工作介質的周期以及延長其使用壽命。 |
墨水 | 隨著打印機技術的不斷發展,打印機用的墨水變得越來越重要。噴墨打印機墨水的粒度應當控制在一定的尺度以下,且分布均勻,大的顆粒易于堵塞打印頭并影響打印質量。墨水是通過研磨方法制得的,可用粒度檢測分析儀器設備監測其研磨加工過程,以保證墨水的顆粒粒度分布均勻,避免產生聚集的大顆粒。 |
膠束 | 膠束是表面活性劑在溶液中的濃度超過某一臨界值后,其分子或離子自動締合而成的膠體尺度大小的聚集體質點微粒,這種膠體質點與離子之間處于平衡狀態。乳液、色漆、制藥粉體、顏料、聚合物、蛋白質大分、二氧化硅以及自組裝TiO2納米管(TNAs)等 |
尊敬的用戶您好,在對儀器還不了解的情況下,為了讓您可以選擇一款適合貴單位的設備,可以先寄送樣品到我們公司,由我們的技術人員幫您測試樣品,并將測試結果和數據報告發送到您郵箱或者將紙質版寄送到貴單位。
下方鏈接是測試申請表,請下載填寫完整后隨樣品一起寄送過來。
下載鏈接在這里郵寄地址:中國上海閔行區漕河涇浦江高科技園 F區 新駿環路588號23幢402室
郵編:201204
:吳先生(請備注樣品)
電話:
Nicomp 380 系列彩頁 | ||
序號 | 文件類型 | 下載鏈接 |
1 | PSS_380合集_Brochures_CN_v3.0 | |
2 | PSS_N3000_納米粒度儀_flyer_CN_v4.0 | |
3 | PSS_Z3000_納米粒度及Zeta電位分析儀_flyer_CN_v4.0 | |
4 | PSS_Nicomp_3000_粒度分析儀系列_Brochures_V4.4 |
AccuSizer 780 系列彩頁 | ||
序號 | 文件類型 | 下載鏈接 |
1 | PSS_780合集_Brochures_CN_v3.0 | |
2 | PSS_不溶性微粒專題_flyer_CN_v3.0 | |
3 | PSS_粒度儀在醫藥行業的應用_flyer_CN_v3.0 | |
4 | PSS_A2000_SIS_不溶性微粒檢測儀_flyer_CN_v4.0 | |
5 | PSS_A7000_APS_大乳粒檢測儀_flyer_CN_v4.0 | |
6 | PSS_A7000_AD_多功能自動計數粒度儀_flyer_CN_v4.0 | |
7 | PSS_FMS_flyer_CN_v3.0 | |
8 | PSS_AccuSizer_2000_不溶性微粒分析儀系列_Brochures_V4.4 | |
9 | PSS_AccuSizer_7000_計數粒度分析儀系列_Brochures_V4.4 | |
10 | PSS_AccuSizer_9000_高濃度納米顆粒計數器系列_Brochures_V4.4 | |
11 | PSS_FMS_在線粒度儀系列_Brochures_V4.4 |