EVK2-CP/600.71/L/R EPC無液壓站EMG 探測頭
光電探測器的原理是由輻射引起被照射材料電導率發生改變。光電探測器在軍事和國民經濟的各個領域有廣泛用途。在可見光或近紅外波段主要用于射線測量和探測、工業自動控制、光度計量等;在紅外波段主要用于D彈制導、紅外熱成像、紅外遙感等方面。光電導體的另一應用是用它做攝像管靶面。為了避免光生載流子擴散引起圖像模糊,連續薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取鑲嵌靶面的方法,整個靶面由約10萬個單獨探測器組成。
光電探測器能把光信號轉換為電信號。根據器件對輻射響應的方式不同或者說器件工作的機理不同,光電探測器可分為兩大類:一類是光子探測器;另一類是熱探測器。
光電探測器件的應用選擇,實際上是應用時的一些事項或要點。在很多要求不太嚴格的應用中,可采用任何一種光電探測器件。不過在某些情況下,選用某種器件會更合適些。例如,當需要比較大的光敏面積時,可選用真空光電管,因其光譜響應范圍比較寬,故真空光電管普遍應用于分光光度計中。當被測輻射信號微弱、要求響應速度較高時,采用光電倍增管最合適,因為其放大倍數可達10^4~10^8以上,這樣高的增益可使其信號超過輸出和放大線路內的噪聲分量,使得對探測器的限制只剩下光陰極電流中的統計變化。因此,在天文學、光譜學、激光測距和閃爍計數等方面,光電倍增管得到廣泛應用。
EMG SV1-10/16/315/6
EMG SV1-10/32/315/6
光電探測頭 :EVK2-CP/600.71/L/R EMG糾偏單元 EPC無液壓站自動對邊設備
高頻交變光測量接收器:LS13 IP54, 0~50℃.
高頻交變光測量接受器:LS14; IP54, 0~50℃.
高頻交流光發射器:LLS675/01
數字式控制單元:ICONXE/AE1054
線性位移傳感器:KLW 300.012
液壓閥臺:HT16.500
液壓伺服閥SV1-10/48/315/6
帶CAN-BUS 20米
供電: 220VAC
信號輸出PROF INET
固體光電探測器用途非常廣。CdS光敏電阻因其成本低而在光亮度控制(如照相自動曝光)中得到采用;光電池是固體光電器件中具有最大光敏面積的器件,它除用做探測器件外,還可作太陽能變換器;硅光電二極管體積小、響應快、可靠性高,而且在可見光與近紅外波段內有較高的量子效率,因而在各種工業控制中獲得應用。硅雪崩管由于增益高、響應快、噪聲小,因而在激光測距與光纖通信中普遍采用。
photoconductive detector 利用半導體材料的光電導效應制成的一種光探測器件。所謂光電導效應,是指由輻射引起被照射材料電導率改變的一種物理現象。光電導探測器在軍事和國民經濟的各個領域有廣泛用途。在可見光或近紅外波段主要用于射線測量和探測、工業自動控制、光度計量等;在紅外波段主要用于D彈制導、紅外熱成像、紅外遙感等方面。光電導體的另一應用是用它做攝像管靶面。為了避免光生載流子擴散引起圖像模糊,連續薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取鑲嵌靶面的方法,整個靶面由約10萬個單獨探測器組成。
EMG LS13.01測量光電傳感器
EVK2-CP/400.71/L/R EMG 傳感器
EVM2 CP/750.71/L/R傳感器 EMG
LS14.01 EMG 測量光電傳感器
EMG光電式測量傳感器 EVM2-CP/1850 71/L/R
EMG 高頻報警光發射器 LIH2/30/230.01
EMG LID2-800.2C 對中光源發射器
EMG LID2-300.2C 對中光源發射器
EMG LLS 1075 線性光源發射器
EMG LLS 1075/01 線性光源發射器
CPC光源 LLS 675/11 Lichtband
EMG LLS 875/02 線性光源發射器
EMG LLS 675/01 線性光源發射器
EMG 線性光源發射器 LLS875/01
EMG對中光源發射器 LIE 1075/230/50
EMG LLS 475/01 線性光源發射器
EMG LIC1075/11光源發射器
EMG 對中光源發射器 LIE 1075/230/50
EPC測量單元 EVK2-CP_600.71_L_R_A_Version_02
EMG 光源發射器 L1C770/01-24VDC/3.0A
EMG LPS600.01 光源發射器
EMG LIC770/01 光源發射器
EMG LIC1075/01 光源發射器
EMG LIC770/11 CPC高頻光源
EMG LID2-800.32C 對中光源發射器
EMG SV1-10/16/100/1/D 伺服閥
伺服閥 SERVOVENTIL SV1-06/05/210/5
1873年,英國W·史密斯發現硒的光電導效應,但是這種效應長期處于探索研究階段,未獲實際應用。第二次世界大戰以后,隨著半導體的發展,各種新的光電導材料不斷出現。在可見光波段方面,到二十世紀50年代中期,性能良好的硫化鎘、硒化鎘光敏電阻和紅外波段的硫化鉛光電探測器都已投入使用。二十世紀60年代初,中遠紅外波段靈敏的Ge、Si摻雜光電導探測器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(鍺摻金)和Ge:Hg光電導探測器。二十世紀60年代末以后,HgCdTe、PbSnTe等可變禁帶寬度的三元系材料的研究取得進展。 工作原理和特性 光電導效應是內光電效應的一種。當照射的光子能量hv等于或大于半導體的禁帶寬度Eg時,光子能夠將價帶中的電子激發到導帶,從而產生導電的電子、空穴對,這就是本征光電導效應。這里h是普朗克常數,v是光子頻率,Eg是材料的禁帶寬度(單位為電子伏)。因此,本征光電導體的響應長波限λc為 λc=hc/Eg=1.24/Eg (μm) 式中 c為光速。本征光電導材料的長波限受禁帶寬度的限制。
工作溫度高(高于77K),使用方便,而Ge:Hg工作溫度為38K;本征吸收系數大,樣品尺寸??;易于制造多元器件。表1和表2分別列出部分半導體材料的Eg、Ei和λc值。EVK2-CP/600.71/L/R EPC無液壓站EMG 探測頭