YH系列熱電阻詳細介紹
產品特點:
熱電阻,它的阻值跟溫度的變化成正比。PT100的阻值與溫度變化關系為:當PT100溫度為0℃時它的阻值為100歐姆,在100℃時它的阻值約為138.5歐姆。它的工業原理:當PT100在0攝氏度的時候他的阻值為100歐姆,它的阻值會隨著溫度上升而成勻速增長的。
典型應用
隔離變送器是一種將熱電阻信號按溫度高低隔離轉換成與溫度成線性標準信號的混合集成電路。該電路在同一芯片上集成了一組多路高隔離的DC/DC電源,幾個高性能的信號隔離器和熱電阻線性化、長線補償、干擾抑制電路,特別適用于Pt100/Cu50熱電阻信號隔離轉換成標準信號,溫度信號的變送與無失真遠傳,工業現場PLC或DCS系統的溫度信號采集與隔離。
芯片內部集成了高效率的DC-DC,能產生兩組互相隔離的電源分別給內部輸入端放大電路、調制電路供電和輸出端解調電路、轉換電路、濾波電路供電。SMD工藝結構及新技術隔離措施使該器件能達到:電源、信號的輸入/輸出 3000VDC三隔離。并且能滿足工業級寬溫度、潮濕、震動的現場惡劣工作環境要求。
溫度信號隔離放大器使用非常方便,只需很少外部元件,即可實現Pt100熱電阻信號的隔離變送。并可以實現工業現場溫度控制信號一進兩出、一進四出的功能。
應用范圍
醫療、電機、工業、溫度計算、阻值計算等高精溫度設備,應用范圍非常之廣泛。
引線方式
熱電阻是把溫度變化轉換為電阻值變化的一次元件,通常需要把電阻信號通過引線傳遞到計算機控制裝置或者其它一次儀表上。工業用熱電阻安裝在生產現場,與控制室之間存在一定的距離,因此熱電阻的引線對測量結果會有較大的影響。
國標熱電阻的引線主要有三種方式:
二線制:在熱電阻的兩端各連接一根導線來引出電阻信號的方式叫二線制:這種引線方法很簡單,但由于連接導線必然存在引線電阻r,r大小與導線的材質和長度的因素有關,因此這種引線方式只適用于測量精度較低的場合
三線制:在熱電阻的根部的一端連接一根引線,另一端連接兩根引線的方式稱為三線制,這種方式通常與電橋配套使用,可以較好的消除引線電阻的影響,是工業過程控制中的常用的引線電阻。
四線制:在熱電阻的根部兩端各連接兩根導線的方式稱為四線制,其中兩根引線為熱電阻提供恒定電流I,把R轉換成電壓信號U,再通過另兩根引線把U引至二次儀表??梢娺@種引線方式可消除引線的電阻影響,主要用于高精度的溫度檢測。
熱電阻采用三線制接法。采用三線制是為了消除連接導線電阻引起的測量誤差。這是因為測量熱電阻的電路一般是不平衡電橋。熱電阻作為電橋的一個橋臂電阻,其連接導線(從熱電阻到中控室)也成為橋臂電阻的一部分,這一部分電阻是未知的且隨環境溫度變化,造成測量誤差。采用三線制,將導線一根接到電橋的電源端,其余兩根分別接到熱電阻所在的橋臂及與其相鄰的橋臂上,這樣消除了導線線路電阻帶來的測量誤差。工業上一般都采用三線制接法。
技術參數
三線、四線或兩線 Pt100/Cu50熱電阻信號直接輸入
精度、線性度誤差等級: 0.2級(相對溫度)
內置線性化處理和長線補償電路
電源、信號:輸入/輸出 3000VDC三隔離
輔助電源:5V、12V、15V或24V直流單電源供電
國際標準信號輸出:4-20mA/0-5V/0-10V等
低成本、超小體積,使用方便,可靠性高
標準 SIP12/DIP24符合UL94V-0阻燃封裝
工業級溫度范圍: - 40 - + 85 ℃
型號指南
溫度信號隔離、采集及變換
工業現場高精度溫度測量
熱電阻信號隔離與溫度控制
地線干擾抑制
溫度傳感器信號轉換成標準信號
油溫測量與報警
信號遠程無失真傳輸
電力監控、醫療設備溫度控制隔離安全柵
產品校準
設備準確到0.01歐的電阻箱一臺,直流電源一臺,4位半萬用表一臺
步驟
1、 將產品按照應用圖接好線,或者將產品安裝到已經設計好的線路板上。
產品應用圖2、 根據輔助電源的值,連接好電源;安裝好調節電位器;輸出接到萬用表。
3、 根據輸入的溫度范圍查分度表得出對應的電阻值范圍Rlow~Rhigh。
4、 接通電源,開機15分鐘。
5、 將電阻箱的阻值調到等于Rlow的值,調節零點電位器,使輸出為零點的對應輸出值(例如4mA)。
6、 將電阻箱的阻值調到等于Rhigh的值,調節幅值電位器,使輸出為滿度的對應輸出值(例如20mA)。
7、 重復5、6步驟幾次,提高輸出精度。
8、 校準完成。[1]
YH系列熱電偶詳細介紹
熱電偶(thermocouple)是溫度測量儀表中常用的測溫元件,它直接測量溫度,并把溫度信號轉換成熱電動勢信號,通過電氣儀表(二次儀表)轉換成被測介質的溫度。各種熱電偶的外形常因需要而極不相同,但是它們的基本結構卻大致相同,通常由熱電極、絕緣套保護管和接線盒等主要部分組成,通常和顯示儀表、記錄儀表及電子調節器配套使用。
工作原理
熱電偶測溫的基本原理是兩種不同成份的材質導體組成閉合回路,
熱電偶當兩端存在溫度梯度時,回路中就會有電流通過,此時兩端之間就存在電動勢——熱電動勢,這就是所謂的塞貝克效應(Seebeck effect)。兩種不同成份的均質導體為熱電極,溫度較高的一端為工作端,溫度較低的一端為自由端,自由端通常處于某個恒定的溫度下。根據熱電動勢與溫度的函數關系,制成熱電偶分度表;分度表是自由端溫度在0℃時的條件下得到的,不同的熱電偶具有不同的分度表。
熱電偶在熱電偶回路中接入第三種金屬材料時,只要該材料兩個接點的溫度相同,熱電偶所產生的熱電勢將保持不變,即不受第三種金屬接入回路中的影響。因此,在熱電偶測溫時,可接入測量儀表,測得熱電動勢后,即可知道被測介質的溫度。熱電偶測量溫度時要求其冷端(測量端為熱端,通過引線與測量電路連接的端稱為冷端)的溫度保持不變,其熱電勢大小才與測量溫度呈一定的比例關系。若測量時,冷端的(環境)溫度變化,將嚴重影響測量的準確性。在冷端采取一定措施補償由于冷端溫度變化造成的影響稱為熱電偶的冷端補償正常。與測量儀表連接用補償導線。
熱電偶冷端補償計算方法:
從毫伏到溫度:測量冷端溫度,換算為對應毫伏值,與熱電偶的毫伏值相加,換算出溫度;
從溫度到毫伏:測量出實際溫度與冷端溫度,分別換算為毫伏值,相減後得出毫伏值,即得溫度。
測溫條件
熱電偶高清圖片是一種感溫元件,是一種一次儀表,熱電偶直接丈量溫度。由2種不同成分材質的導體組成的閉合回路,由于材質不同,不同的電子密度產生電子擴散,穩定均衡后就產生 了電勢。當兩端存在梯度溫度時,回路中就會有電流產生,產生熱電動勢,溫度差越大,電流就會越大。測得熱電動勢之后即可曉得溫度值。熱電偶實際上是一種能量轉換器,可將熱能轉換成電能。
技術優勢:
熱電偶測溫范圍寬,性能比擬穩定;丈量精度高,熱電偶與被測對象直接接觸,不受中間介質的影響;熱響應時間快,熱電偶對溫度變化反響靈活;丈量范圍 大,熱電偶從-40~+ 1600℃ 均可連續測溫;熱電偶性能牢靠, 機械強度好。運用壽命長,裝置便當。
電偶必需是由兩種性質不同但契合一定要求的導體(或半導體)材料構成回路。熱電偶丈量端和參考端之間必需有溫差。
將兩種不同資料的導體或半導體A和B焊接起來,構成一個閉合回路。當導體A和B的兩個執著點1和2之間存在溫差時,兩者之間便產生電動勢,因此在回路中構成一個大小的電流,這 種現象稱為熱電效應。熱電偶就是應用這一效應來工作的。
主要特點
1、裝配簡單,熱電偶更換方便;
2、壓簧式感溫元件,抗震性能好;
3、測量精度高;
4、測量范圍大(-200℃~1300℃,特殊情況下-270℃~2800℃);
5、熱響應時間快;
6、機械強度高,耐壓性能好;
7、耐高溫可達2800度;
8、使用壽命長。
結構要求
熱電偶的結構形式為了保證熱電偶可靠、
熱電偶穩定地工作,對它的結構要求如下:
1、組成熱電偶的兩個熱電極的焊接必須牢固;
2、兩個熱電極彼此之間應很好地絕緣,以防短路;
3、補償導線與熱電偶自由端的連接要方便可靠;
4、保護套管應能保證熱電極與有害介質充分隔離。
兩種不同成份的導體(稱為熱電偶絲材或熱電極)兩端接合成回路,
熱電偶當兩個接合點的溫度不同時,在回路中就會產生電動勢,這種現象稱為熱電效應,而這種電動勢稱為熱電勢。熱電偶就是利用這種原理進行溫度測量的,其中,直接用作測量介質溫度的一端叫做工作端(也稱為測量端),另一端叫做冷端(也稱為補償端);冷端與顯示儀表或配套儀表連接,顯示儀表會指出熱電偶所產生的熱電勢。
熱電偶實際上是一種能量轉換器,它將熱能轉換為電能,用所產生的熱電勢測量溫度,對于熱電偶的熱電勢,應注意如下幾個問題:
1、熱電偶的熱電勢是熱電偶工作端的兩端溫度函數的差,而不是熱電偶冷端與工作端,兩端溫度差的函數;
2、熱電偶所產生的熱電勢的大小,當熱電偶的材料是均勻時,與熱電偶的長度和直徑無關,只與熱電偶材料的成份和兩端的溫差有關;
3、當熱電偶的兩個熱電偶絲材料成份確定后,熱電偶熱電勢的大小,只與熱電偶的溫度差有關;若熱電偶冷端的溫度保持一定,這進熱電偶的熱電勢僅是工作端溫度的單值函數。將兩種不同材料的導體或半導體A和B焊接起來,構成一個閉合回路,如圖所示。當導體A和B的兩個執著點1和2之間存在溫差時,兩者之間便產生電動勢,因而在回路中形成一個大小的電流。熱電偶就是利用這一效應來工作的。
6常見種類 常用熱電偶可分為標準熱電偶和非標準熱電偶兩大類。所謂標準熱電偶是指國家標準規定了其熱電勢與溫度的關系、允許誤差、并有統一的標準分度表的熱電偶,它有與其配套的顯示儀表可供選用。非標準化熱電偶在使用范圍或數量級上均不及標準化熱電偶,一般也沒有統一的分度表,主要用于某些特殊場合的測量。S、B、E、K、R、J、T七種標準化熱電偶為中國設計熱電偶。
熱電偶分度號 | 熱電極材料 | |
正極 | 負極 | |
S | 鉑銠 10 | 純鉑 |
R | 鉑銠 13 | 純鉑 |
B | 鉑銠 30 | 鉑銠 6 |
K | 鎳鉻 | 鎳硅 |
T | 純銅 | 銅鎳 |
J | 鐵 | 銅鎳 |
N | 鎳鉻硅 | 鎳硅 |
E | 鎳鉻 | 銅鎳 |
從理論上講,任何兩種不同導體(或半導體)都可以配制成熱電偶,但是作為實用的測溫元件,對它的要求是多方面的。為了保證工程技術中的可靠性,以及足夠的測量精度,并不是所有材料都能組成熱電偶,
1、在測溫范圍內,熱電性質穩定,不隨時間而變化,有足夠的物理化學穩定性,不易氧化或腐蝕;
2、電阻溫度系數小,導電率高,比熱?。?br style="BOX-SIZING: border-box; PADDING-BOTTOM: 0px; LIST-STYLE-TYPE: none; MARGIN: 0px; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; PADDING-TOP: 0px; transition: all 0.3s">3、測溫中產生熱電勢要大,并且熱電勢與溫度之間呈線性或接近線性的單值函數關系;
4、材料復制性好,機械強度高,制造工藝簡單,價格便宜。
熱電偶作為主要測溫手段,用途十分廣泛,因而對固定裝置和技術性能有多種要求,因此熱電偶的固定裝置分為六種:無固定裝置式、螺紋式、固定法蘭式、活動法蘭式、活動法蘭角尺形式、錐形保護管式六種。
2、按裝配及結構方式分類
根據熱電偶的性能結構方式可分為:可拆卸式熱電偶、隔爆式熱電偶、鎧裝熱電偶和壓彈簧固定式熱電偶等特殊用途的熱電偶。
安全可考及維修方便,而且不影響設備運行和生產操作.要滿足以上要求,在選擇對熱電偶和熱電阻的安裝部位和插入深度時要注意以下幾點:
1、為了使熱電偶和熱電阻的測量端與被測介質之間有充分的熱交換,應合理選擇測點位置,盡量避免在閥門,彎頭及管道和設備的死角附近裝設熱電偶或熱電阻。
2、帶有保護套管的熱電偶和熱電阻有傳熱和散熱損失,為了減少測量誤差,熱電偶和熱電阻應該有足夠的插入深度:
(1)對于測量管道中心流體溫度的熱電偶,
熱電偶一般都應將其測量端插入到管道中心處(垂直安裝或傾斜安裝).如被測流體的管道直徑是200毫米,那熱電偶或熱電阻插入深度應選擇100毫米;
(2)對于高溫高壓和高速流體的溫度測量(如主蒸汽溫度),為了減小保護套對流體的阻力和防止保護套在流體作用下發生斷裂,可采取保護管淺插方式或采用熱套式熱電偶,淺插式的熱電偶保護套管,其插入主蒸汽管道的深度應不小于75mm;熱套式熱電偶的標準插入深度為100mm;
(3)假如需要測量是煙道內煙氣的溫度,盡管煙道直徑為4m,熱電偶或熱電阻插入深度1 m即可;
(4)當測量原件插入深度超過1m時,應盡可能垂直安裝,或加裝支撐架和保護套管。
熱電偶而且還可節省熱電偶的材料消耗,既節省資金又能保證產品質量。安裝不正確,熱導率和時間滯后等誤差,它們是熱電偶在使用中的主要誤差。
1、安裝不當引入的誤差
如熱電偶安裝的位置及插入深度不能反映爐膛的真實溫度等,換句話說,熱電偶不應裝在太靠近門和加熱的地方,插入的深度至少應為保護管直徑的8~10倍;熱電偶的保護套管與壁間的間隔未填絕熱物質致使爐內熱溢出或冷空氣侵入,因此熱電偶保護管和爐壁孔之間的空隙應用耐火泥或石棉繩等絕熱物質堵塞以免冷熱空氣對流而影響測溫的準確性;熱電偶冷端太靠近爐體使溫度超過100℃;熱電偶的安裝應盡可能避開強磁場和強電場,所以不應把熱電偶和動力電纜線裝在同一根導管內以免引入干擾造成誤差;熱電偶不能安裝在被測介質很少流動的區域內,當用熱電偶測量管內氣體溫度時,必須使熱電偶逆著流速方向安裝,而且充分與氣體接觸。
2、絕緣變差而引入的誤差
如熱電偶絕緣了,保護管和拉線板污垢或鹽渣過多致使熱電偶極間與爐壁間絕緣不良,在高溫下更為嚴重,這不僅會引起熱電勢的損耗而且還會引入干擾,由此引起的誤差有時可達上。
3、熱惰性引入的誤差
由于熱電偶的熱惰性使儀表的指示值落后于被測溫度的變化,
熱電偶在進行快速測量時這種影響尤為突出。所以應盡可能采用熱電極較細、保護管直徑較小的熱電偶。測溫環境許可時,甚至可將保護管取去。由于存在測量滯后,用熱電偶檢測出的溫度波動的振幅較爐溫波動的振幅小。測量滯后越大,熱電偶波動的振幅就越小,與實際爐溫的差別也就越大。當用時間常數大的熱電偶測溫或控溫時,儀表顯示的溫度雖然波動很小,但實際爐溫的波動可能很大。為了準確的測量溫度,應當選擇時間常數小的熱電偶。時間常數與傳熱系數成反比,與熱電偶熱端的直徑、材料的密度及比熱成正比,如要減小時間常數,除增加傳熱系數以外,有效的辦法是盡量減小熱端的尺寸。使用中,通常采用導熱性能好的材料,管壁薄、內徑小的保護套管。在較精密的溫度測量中,使用無保護套管的裸絲熱電偶,但熱電偶容易損壞,應及時校正及更換。
4、熱阻誤差
高溫時,如保護管上有一層煤灰,塵埃附在上面,則熱阻增加,阻礙熱的傳導,這時溫度示值比被測溫度的真值低。因此,應保持熱電偶保護管外部的清潔,以減小誤差。
按照儀表接線圖進行正確接線通電后,儀表先是顯示儀表的熱電偶分度號,
熱電偶接著顯示儀表量程范圍,再測儀表下排的數碼管顯示設定溫度,儀表上排數碼管顯示測量溫度。若儀表上排數碼管顯示不是發熱體的溫度,而顯示“OVER”、“0000”或“000”等狀況,說明儀表輸入部位產生故障,應作如下試驗:
1)把熱電偶從儀表熱電偶輸入端拆下,再用任何一根導線把儀表熱電偶輸入端短路。通電時,儀表上排數碼管顯示值約為室溫時,說明熱電偶內部連線開路,應更換同類型熱電偶。若還是以上所說的狀況,說明儀表在運輸過程中,儀表的輸入端被損壞,要調換儀表。
2)把上述故障儀表的熱電偶拆去,換用旁邊運行正常的同種分度號儀表上接入的熱電偶,通電后,原故障儀表上排數碼管顯示發熱體溫度時,說明熱電偶連線開路,更換同類型熱電偶。
3)把有故障的熱電偶從儀表上拆下來,用萬用表放在測量歐姆(R)*1檔,
熱電偶用萬用表兩表棒去測熱電偶兩端,若萬用表上顯示的電阻值很大,說明熱電偶內部連接開路,更換同類型熱電偶。否則有一定阻值,說明儀表輸入端有問題,應更換儀表。
4)按照儀表接線圖接線正確,若儀表通電后,儀表上排數碼管顯示有負值等現象,說明接入儀表的熱電偶“+”與“—”接錯而造成的。只要重新調換一下即可。
5)接線正確儀表在運行時,儀表上排數碼管顯示的溫度與實際測量的溫度相差40度~70度。甚至相差更大,說明儀表的分度號與熱電偶的分度號搞錯。按熱電偶分度號B、S、K、E等熱電偶的溫度與毫伏(MV)值的對應關系來看,同樣溫度的情況下,產生的毫伏值(MV)B分度號最小,S分度號次小,K分度號較大,E分度號,按照此原理來判別。
常見故障分析及處理:
故障現象 | 可能原因 | 處理方法 |
熱電勢比實際值?。@示儀表指示值偏低) | 熱電極短路 | 如潮濕所致,則進行干燥;如絕緣子損壞,則更換絕緣子 |
熱電偶的接線柱處積灰,造成短路 | 清掃積灰 | |
補償導線線間短路 | 找出短路點,加強絕緣或更換補償導線 | |
熱電偶熱電極變質 | 在長度允許的發問下,剪去變質段重新焊接,或更換新熱電偶 | |
補償導線與熱電偶極性接反 | 重新接正確 | |
補償導線與熱電偶不配套 | 更換相配套的補償導線 | |
熱電偶安裝位置不錄或插入深度不符合要求 | 重新按規定安裝 | |
熱電偶冷端溫度補償不符合要求 | 調整冷端補償器 | |
熱電偶與顯示儀表不配套 | 更換熱電偶或顯示儀表使之相配套 | |
熱電勢比實際值大(顯示儀表指示值偏高) | 顯示儀表與熱電偶不配套 | 更換熱電偶使之相配套 |
熱電偶與補償導線不配套 | 更換補償導線使之相配套 | |
有直流干擾信號進入 | 排除直流干擾 | |
熱電勢輸出不穩定 | 熱電偶接線柱與熱電極接觸不良 | 將接線柱螺絲擰緊 |
熱電偶測量線路絕緣破損,引起斷續短路或接地 | 找出故障點,修復絕緣 | |
熱電偶安裝不牢或外部震動 | 緊固熱電偶,消除震動或采取減震措施 | |
熱電極將斷未斷 | 修復或更換熱電偶 | |
外界干擾(交流漏電,電磁場感應等) | 查出干擾源,采用屏蔽措施 | |
熱電偶熱電勢誤差大 | 熱電極變質 | 更換熱電極 |
熱電偶安裝位置不當 | 改變安裝位置 | |
保護管表面積灰 | 清除積灰 |
溫度補償
由于熱電偶的材料一般都比較貴重(特別是采用貴金屬時),
而測溫點到儀表的距離都很遠,為了節省熱電偶材料,降低成本,通常采用補償導線把熱電偶的冷端(自由端)延伸到溫度比較穩定的控制室內,連接到儀表端子上。必須指出,熱電偶補償導線的作用只起延伸熱電極,使熱電偶的冷端移動到控制室的儀表端子上,它本身并不能消除冷端溫度變化對測溫的影響,不起補償作用。因此,還需采用其他修正方法來補償冷端溫度t0≠0℃時對測溫的影響。在使用熱電偶補償導線時必須注意型號相配,極性不能接錯,補償導線與熱電偶連接端的溫度差不能超過100℃。
主要優點
1、測量精度高。因直接與被測對象接觸,不受中間介質的影響。
2、測量范圍廣。常用的熱電偶從零下50度——1600度均可連續測量,某些特殊熱電偶低可測到-269度(如金鐵鎳鉻),高可達2800度(如鎢、錸)。
3、構造簡單,使用方便。熱電偶通常是由兩種不同的金屬絲組成,而且不受大小和開頭的限制,外有保護套管,用起來非常方便。
選擇方法
熱電偶是兩種不同的導體連接在一起形成的,
當測量及參考連接點分別處于不同溫度上時即產生出所謂的熱電磁力(EMF)。連接點用途測量連接點是處于被測溫度上的熱電偶連接點部分。參考連接點則是保持在一已知溫度上,或溫度變化能自動補償的熱電偶連接點部分。
在常規工業應用中,熱電偶元件一般端接在接頭上;但參考連接點卻很少位于接頭上,而是利用適當的熱電偶延伸線來轉接到溫度比較穩定的被控環境中。連接點類型接殼式熱電偶連接點與探針壁物理連接(焊接),這能實現很好的熱傳輸——即從外部通過探針壁將熱量傳至熱電偶連接點。建議用接殼式熱電偶來測量靜態或流動腐蝕性氣體與液體的溫度,以及一些高壓應用。在絕緣式熱電偶中,熱電偶連接點與探針壁分開并由一種軟性粉末包圍。雖然絕緣式熱電偶的響應速度比接殼式熱電偶的響應速度要慢,但它能提供電絕緣。建議使用絕緣式熱電偶來測量腐蝕性環境,可理想地通過護套屏蔽來將熱電偶與周圍環境電絕緣。露端式熱電偶允許連接點頂端深入到周圍環境中,這種類型可提供的響應時間,但于在非腐蝕、非危險及非加壓應用中使用。響應時間以時間常數來表示,時間常數定義為傳感器在被控環境中在初始值和最終值之間改變63.2%所需的時間。露端式熱電偶具有快的響應速度,而且探針護套直徑越小,則響應速度就越快,但其允許測量溫度也就越低。延伸線熱電偶延伸線是一對具有與其相連熱電偶相同溫度電磁頻率特征的線。當連接合適時,延伸線將參考連接點從熱電偶轉接至線的另一端,而這一端通常位于被控環境中。
選擇熱電偶選擇熱電偶時需考慮下列因素:
1、被測溫度范圍;
2、所需響應時間;
3、連接點類型;
4、熱電偶或護套材料的抗化學腐蝕能力;
5、抗磨損或抗振動能力;
6、安裝及限制要求等。