銷售CEFRP電纜CEFR/DA電纜 船用橡套軟電纜/本月價格
銷售總:郭龍
電力電纜(power cable),用于傳輸和分配電能的電纜。常用于城市地下電網、發電站的引出線路、工礦企業的內部供電及過江、過海的水下輸電線。在電力線路中,電纜所占的比重正逐漸增加。電力電纜是在電力系統的主于線路中用以傳輸和分配大功率電能的電纜產品,其中包括1-500KV以及以上各種電壓等級,各種絕緣的電力電纜。
電力電纜的使用至今已有百余年歷史。1879年,美國發明家T.A.愛迪生在銅棒上包繞黃麻并將其穿入鐵管內,然后填充瀝青混合物制成電纜。他將此電纜敷設于紐約,開創了地下輸電。次年,英國人卡倫德發明瀝青浸漬紙絕緣電力電纜。1889年,英國人S.Z.費蘭梯在倫敦與德特福德之間敷設了10千伏油浸紙絕緣電纜。1908年,英國建成20千伏電纜網。電力電纜得到越來越廣的應用。1911年,德國敷設成60千伏高壓電纜,開始了高壓電纜的發展。1913年,德國人M.霍希施泰特研制成分相屏蔽電纜,改善了電纜內部電場分布,消除了絕緣表面的正切應力,成為電力電纜發展中的里程碑。1952年,瑞典在北部發電廠敷設了380千伏超高壓電纜,實現了超高壓電纜的應用。到80年代已制成1100千伏、1200千伏的特高壓電力電纜。
基本結構
電力電纜的基本結構由線芯(導體)、絕緣層、屏蔽層和保護層四部分組成。
(1)線芯
線芯是電力電纜的導電部分,用來輸送電能,是電力電纜的主要部分。
(2)絕緣層
絕緣層是將線芯與大地以及不同相的線芯間在電氣上彼此隔離,保證電能輸送,是電力電纜結構中*的組成部分。
(3)屏蔽層
15KV及以上的電力電纜一般都有導體屏蔽層和絕緣屏蔽層。
(4)保護層
保護層的作用是保護電力電纜免受外界雜質和水分的侵入,以及防止外力直接損壞電力電纜。
分類
按電壓等級分
按電壓等級可分為中、低壓電力電纜(35千伏及以下)、高壓電纜 (110千伏以上)、超高壓電纜(275~800千伏)以及特高壓電纜(1000千伏及以上)。此外,還可按電流制分為交流電纜和直流電纜。
按絕緣材料分
1、油浸紙絕緣電力電纜 以油浸紙作絕緣的電力電纜。其應用歷史zui長。它安全可靠,使用壽命長,價格低廉。主要缺點是敷設受落差限制。自從開發出不滴流浸紙絕緣后,解決了落差限制問題,使油浸紙絕緣電纜得以繼續廣泛應用。
2、塑料絕緣電力電纜 絕緣層為擠壓塑料的電力電纜。常用的塑料有聚氯乙烯、聚乙烯、交聯聚乙烯。塑料電纜結構簡單,制造加工方便,重量輕,敷設安裝方便,不受敷設落差限制。因此廣泛應用作中低壓電纜,并有取代粘性浸漬油紙電纜的趨勢。其zui大缺點是存在樹枝化擊穿現象,這限制了它在更高電壓的使用。
3、橡皮絕緣電力電纜 絕緣層為橡膠加上各種配合劑,經過充分混煉后擠包在導電線心上,經過加溫硫化而成。它柔軟,富有彈性,適合于移動頻繁、敷設彎曲半徑小的場合。
常用作絕緣的膠料有天然膠-丁苯膠混合物,乙丙膠、丁基膠等。
廠家制造原因根據發生部位不同,又分為電纜本體原因、電纜接頭原因、電纜接地系統原因三類。
(1)電纜本體制造原因
一般在電纜生產過程中容易出現的問題有絕緣偏心、絕緣屏蔽厚度不均勻、絕緣內有雜質、內外屏蔽有突起、交聯度不均勻、電纜受潮、電纜金屬護套密封不良等,有些情況比較嚴重可能在竣工試驗中或投運后不久出現故障,大部分在電纜系統中以缺陷形式存在,對電纜*安全運行造成嚴重隱患。
?。?)電纜接頭制造原因
高壓電纜接頭以前用繞包型、模鑄型、模塑型等類型,需要現場制作的工作量大,并且因為現場條件的限制和制作工藝的原因,絕緣帶層間不可避免地會有氣隙和雜質,所以容易發生問題?,F在國內普遍采用的型式是組裝型和預制型。
電纜接頭分為電纜終端接頭和電纜中間接頭,不管什么接頭形式,電纜接頭故障一般都出現在電纜絕緣屏蔽斷口處,因為這里是電應力集中的部位,因制造原因導致電纜接頭故障的原因有應力錐本體制造缺陷、絕緣填充劑問題、密封圈漏油等原因。
?。?)電纜接地系統
電纜接地系統包括電纜接地箱、電纜接地保護箱(帶護層保護器)、電纜交叉互聯箱、護層保護器等部分。一般容易發生的問題主要是因為箱體密封不好進水導致多點接地,引起金屬護層感應電流過大。另外護層保護器參數選取不合理或質量不好氧化鋅晶體不穩定也容易引發護層保護器損壞。
因為施工質量導致高壓電纜系統故障的事例很多,主要原因有以下幾個方面:一是現場條件比較差,電纜和接頭在工廠制造時環境和工藝要求都很高,而施工現場溫度、濕度、灰塵都不好控制。二是電纜施工過程中在絕緣表面難免會留下細小的滑痕,半導電顆粒和砂布上的沙粒也有可能嵌入絕緣中,另外接頭施工過程中由于絕緣暴露在空氣中,絕緣中也會吸入水分,這些都給*安全運行留下隱患。三是安裝時沒有嚴格按照工藝施工或工藝規定沒有考慮到可能出現的問題。四是竣工驗收采用直流耐壓試驗造成接頭內形成反電場導致絕緣破壞。五是因密封處理不善導致。中間接頭必須采用金屬銅外殼外加PE或PVC絕緣防腐層的密封結構,在現場施工中保證鉛封的密實,這樣有效的保證了接頭的密封防水性能。
因電纜受熱膨脹導致的電纜擠傷導致擊穿。交聯電纜負荷高時,線芯溫度升高,電纜受熱膨脹,在隧道內轉彎處電纜頂在支架立面上,*大負荷運行電纜蠕動力量很大,導致支架立面壓破電纜外護套、金屬護套,擠入電纜絕緣層導致電纜擊穿
電纜選擇技巧
1、電纜選擇一般原則
電纜的額定電壓等于或大于所在網絡的額定電壓,電纜的zui高工作電壓不得超過其額定電壓的15%。除在要移動或振動劇烈的場所采用銅心電纜外,一般情況下采用鋁心電纜。敷設在電纜構筑物內的電纜宜采用裸鎧裝電纜或鋁包裸塑料護套電纜。直埋電纜采用帶護層的鎧裝電纜或鋁包裸塑料護套電纜。移動機械選用重型橡套電纜。有腐蝕性的土壤一般不采用直埋,否則應采用特殊的防腐層電纜。在有腐蝕性介質的場所,應采相應的電纜護套。垂直或高差較大處敷設電纜,應采用不滴流電纜。環境溫度超過40℃時不宜采用橡皮絕緣電纜。
2、電纜截面校驗
(1)按電壓選擇電纜:按照上述的一般原則中的*條進行選擇。
?。?)按經濟電流密度選擇電纜截面:計算方法與導線截面的計算方法一樣。
?。?)按照線路zui大*負載電流校驗電纜截面Iux≥Izmax
式中:Iux——電纜的允許負載電流(A);
Izmax——電纜中*通過的zui大負載電流(A)。
我們在平時的工作中zui長用的就是這種選擇方法,通常是先求出線路的工作電流,再按照線路zui大的工作電流不應該大于電纜的允許載流量。
烯電纜安全載流量(A)
我們在實際工作中經常會遇到這種情況,由于負荷的增加,負載電流增大,原有電纜載流量不足,過流運行,為了增加容量,考慮到原有電纜運行正常,要重新敷設電纜施工難度大而且不經濟,我們常采用雙并、甚至三并的做法。
在并用電纜的選擇上很多人認為只要在滿足載流量要求的前提下電纜截面越小越經濟,越合理,實際究竟是不是這樣呢。
2006年1月3日1#變壓器至配電室主電纜爆,原185mm的四心鋁心電纜2根爆了一根,工區為了及時恢復供電,將另一根好的電纜保留,并了兩根120mm的四心鋁心電纜進行供電。在運行了10個月后2006年11月15日主電纜再次爆裂,經檢查發現,185mm的電纜爆引發了此次事故。
為什么會發生此次事故呢,按照表一我們可以得出三根電纜并用得安全載流量是668A,使用鉗型電流表測得生活區得的zui大負載電流只有500A,按照Iux≥Izmax的原則,這樣運行應該是安全可靠的。但是,我們忽略了電纜是有電阻的,因為多并電纜連接時,連接處存在接觸電阻不同,而此接觸電阻又往往與電纜本身的電阻可比擬,其結果會造成多并電纜的電流分配不平衡,多并電纜的電流分配,是與電纜的阻抗有關的。