安徽亨利儀表電纜有限公司
主營產品: 硅橡膠電纜,高壓扁電纜,計算機電纜,控制電纜,變頻電纜,補償導線,丁晴電纜,高溫電纜,信號電纜,本安電纜,屏蔽電纜 |
聯系電話
18726217599
公司信息
- 聯系人:
- 黃玉璋
- 電話:
- 86-0550-7516359
- 手機:
- 18726217599
- 傳真:
- 86-0550-7511306
- 地址:
- 安徽省天長市銅城鎮工業園區緯三路169號
- 郵編:
- 239311
- 個性化:
- www.hltzdl.com
- 網址:
- www.cn-hl.net
參考價 | ¥ 59 |
訂貨量 | 1 |
- 型號
- 品牌
- 廠商性質 生產商
- 所在地 滁州市
更新時間:2015-07-06 11:01:07瀏覽次數:770
聯系我們時請說明是環保在線上看到的信息,謝謝!
耐高溫YJGGFPB-6KV電纜-高壓扁電纜控制電纜同一品種采用規定的不同導體結構時,第1種導體用(A)表示(省略),第2種導體用(B)表示,在規格后標明。 5.3.3 控制電纜中的綠/黃雙色絕緣線芯應與其他線芯分別表示。 舉例: (1)銅芯硅橡膠絕緣硅橡膠護套控制電纜,固定敷設用,額定電壓450/750V、19芯、1.5 mm2、有綠/黃雙色絕緣線芯,表示為: 第1類導體結構者:KGG-450/750V 18×1.5+1×1.5 TICW/05-2009 第2類導體結構者:KGG-450/750V 18×1.5(B)+1×1.5(B) TICW/05-2009 (2)銅芯硅橡膠絕緣硅橡膠護套銅帶屏蔽控制電纜,固定敷設用,第1類導體結構,額定電壓0.6/1kV、19芯、1.5mm2、銅帶屏蔽,無綠/黃雙色絕緣線芯,表示為: KGGP2-0.6/1kV 19×1.5 TICW/05-2009 (3)硅橡膠絕緣硅橡膠護套編織屏蔽控制軟電纜,移動敷設用,額定電壓450/750V、19芯、1.5mm2、編織屏蔽,無綠/黃雙色絕緣線芯,表示為: KGGRP-450/750V 19×1.5 TICW/05-2009 (4)銅芯硅橡膠絕緣硅橡膠內套銅帶屏蔽鋼帶鎧裝硅橡膠護套控制電纜,固定敷設用,第1類導體結構,額定電壓450/750V、19芯、1.5mm2、鋼帶鎧裝,無綠/黃雙色絕緣線芯,表示為: KGGP2-2G-450/750V 19×1.5 TICW/05-2009 5.4 電纜燃燒特性代號和表示方法及燃燒特性要求符合GB/T 19666的規定。
硅橡膠兼有無機和有機性質的高分性體絕緣材料它的分子主鏈是硅原子和氧原子交替組成硅氧鍵能達)比一般橡膠結合鍵能要大得多所以硅橡膠具有很高的熱穩定性。又因它的分子側鏈上引入了極少量的不飽和的乙烯基和有機基團如引入了這種結構的硅橡膠具有優良的耐熱老化和耐候老化對臭氧和紫外線的作用也十分穩定且具有優異的電絕緣性能其體積電阻率高達擊穿電壓也高達介電損耗角正切介電常數為并在高壓下電暈放電及電弧具有優良和阻尼作用。阻 燃高溫硫化硅橡膠電纜線 膠料它不僅具有硅橡膠的優異性能而且還具有阻燃自熄的特性是、航天、核工業、光纖、電訊、家用電器、汽車、建材、地下建筑、井下礦山、電線電纜等領域不可 缺少的安全材料。所以用硅橡膠生產的電纜線 尤其是用阻燃高 溫硫化硅橡膠電纜線 膠料生產的電纜線 可以在高溫耐高溫YJGGFPB-6KV電纜-高壓扁電纜
040阻燃膠的阻燃機理高聚物的燃燒過程是一個劇烈的熱氧化過程阻止高聚物的燃燒關鍵是阻止高聚物的裂解若在這一步采用物理或化學方法控制高聚物的裂解就能阻止高聚物的燃燒和蔓延通過降溫、隔熱和隔 絕空氣是99%基本的方法另外終止燃燒過程中過氧化物分解生成性質活潑的羥基 更是至關重要的。因為"實驗方法系統研究了一些聚合物及其阻燃體系的LOI隨溫度變化的規律,提出了新的表片參數(或新溫度指數),它們反映了聚合物體系阻燃性能抵抗溫度上升的能力。文中同時結合TGA、CONE等表征手段探討了影響不同聚合物體系LOI變化規律的主要因素及內在機制:(1)對于純聚合物體系,LOI變化規律及溫度指數與體系在高溫時時的成炭量無直接關系,更多地取決于體系本身化學與物理的熱穩一性。(2)阻燃機理也是影響LOI隨溫度變化規律的重要因素。鹵銻協同體系由于特殊的氣相協同阻燃作用而具有很高的溫度指數。APP/PER構成的典型的無鹵膨脹阻燃(IFR)體系由于熱穩定性低而具有較低的溫度指數。研究同時表明膨脹阻燃促進劑ZEO通常對該體系溫度指數的提高有較明顯的 作用
本文采用熔鑄法制備了不同成分的鎂合金用掃描電鏡、光學顯微鏡、X射線衍射儀等現代分析手段研究了鎂合金顯微組織和強化機制以及鎂合金的高溫氧化行為。 氧化膜經過XRD物相分析和XEM能譜分析得知主要由Ce2O3、Al2O3和MgO組成。表層由MgO組成Ce2O3與Al2O3一起填充MgO孔隙形成了中間層氧化膜中間層致密度足以阻擋氧的進入。在AZ91D鎂合金中加入1Ce后其燃點提高約60℃。因此鎂合金的阻燃性能得到提高。 將合金元素Sb加入到稀土阻燃鎂合金中Sb與Ce優成金屬間化合物CeSb同時減少了大量長棒狀A14Ce相生成的可能性并且形成的顆粒狀CeSb具有形核作用從而細化晶粒。將合金元素Y加入到稀土阻燃鎂合金中, Y優先與Al結合形成熱穩定相Al2Y它作為α-Mg枝晶Mg17Al12相的形核劑促成晶核的形成從而細化了合金的鑄態組織。 實驗表明將合金元素Sb加入到稀土阻燃鎂合金中由于CeSb相的出現其燃點又有所降低
金屬材料的韌性斷裂是塑性加工過程中常見的失效形式和影響熱加工性的重要因素歷來都是塑性加工領域的研究熱點。隨著有限元模擬技術和損傷耐高溫YJGGFPB-6KV電纜-高壓扁電纜力學的不斷發展如何建立合適的熱變形開裂準則預測和避免缺陷的產生已成為缺陷仿真預測迫切需要解決的難題。本文以熱變形極易開裂的Ti40阻燃合金為研究對象以各種室溫下適用的開裂準則為基礎引入Zener-Hollomon因子對Ti40合YVFB、YFFB、YVFGB、YGGB、YGCB、YFGB、KFGB、JFGB、YFVFB、KVFB、KVFGB、YVFRB、YVFGRB、YFGRB、KFGRB、JFGRB、YGGRB、YGCRB、YFVFRB、KVFRB、KVFGRB、YVFPB、YVFGPB、YFGPB、KFGPB、JFGPB、YGGPB、YGCPB、YFVFPB、KVFPB、KVFGPB、YFFB、YFFRPB、YVFRPB、YVFGRPB、YFGRPB、KFGRPB、JFGRPB、YGGRPB、YGCRPB、YFVFRPB、KVFRPB、KVFGRB、YF46GB、KF46GB、JF46GB、YF46GRB、KF46GRB、JF46GRB、ZR-YVFB、ZR-YVFGB、ZR-YFGB、ZR-KFGB、ZR-JFGB、ZR-YGGB、ZR-YGCB、ZR-YFVFB、ZR-KVFB,ZR-KVFGB、ZR-YVFRB、ZR-YVFGRB、ZR-YFGRB、ZR-KFGRB、ZR-JFGRB、ZR-YGGRB、ZR-YGCRB、ZR-YFVFRB、ZR-KVFRB、ZR-KVFGRB、ZR-YVFPB、ZR-YVFGPB、ZR-YFGPB、ZR-KFGPB、ZR-JFGPB、ZR-YGGPB、ZR-YGCPB、ZR-YFVFPB、ZR-KVFPB金的變形機理及開裂行為進行了系統的研究。主要研究內容和結果如下 研究了Ti40合金高溫變形過程中變形溫度和應變速率對流動應力的影響規律揭示了流動軟化和不連續屈服現象的影響因素和機理發現不連續屈服現象與大量可動位錯從晶界突然增殖有關。 揭示了Ti40合金的高溫變形機理。發現變形溫度低于950℃以動態回復為主高于950℃發生動態再結晶。動態再結晶的形貌隨應變速率的變化而變化應變速率較高時(>1s1s)動態再結晶晶粒呈項鏈狀沿原始β晶界分布沿晶界析出的TiSi顆粒是再結晶晶粒的核心應變速率較低時()發生了鋸齒狀的連續再結晶亞晶形核是其形核的主要機制。 研究了Ti40合金的開裂機理。發現低溫、高應變速率下變形以45°剪切開裂為主溫度較高時以平行于壓縮軸方向的縱裂和豆腐渣式開裂為主。VO揮發導致接近表面的晶界產生空洞是合金熱變形開裂的誘因。 揭示了Ti40阻燃合金熱變形開裂的臨界變形量與變形溫度和應變速率的關系。結果表明變形溫度越高應變速率越低材料的臨界變形量越大。發現變形溫度和應變速率的綜合作用可用單變量Zener-Hollomon因子來表示且開裂的臨界變形量與lnZ呈線性關系從而大大減少試驗次數。