卷揚啟閉機廠家大理巍山水電站閘門基本情況1.1工程簡介淮陰閘位于江蘇省淮安市淮陰區王營鎮楊莊,是分淮入沂淮陰樞紐的主體工程。該閘建成于1959年,設計流量為3 000m3/s,校核流量為4 000 m3/s,共30孔,單孔凈寬10 m,總寬345.4m,閘底高程6.0 m。2003年經有關部門檢測,該閘被鑒定為3類閘,2004年經江蘇省*批準對該工程進行加固,并于當年4月開工建設。本次加固工程內容包括:①排架,重建工作橋及新建啟閉機房;②增建中墩貼角,底板10 cm面層;③對排架等處碳化混凝土采用HS環氧厚漿涂料防護;④增建胸墻和上游翼墻鋼筋混凝土擋浪墻;⑤更換閘門和啟閉機;⑥電氣設備更新改造等。1.2閘底板加固項目概況2001年9月,工程主管部門江蘇省淮沭新河處組織對閘底板配筋情況進行了檢測,檢測成果表明,閘底板鑿除檢查配筋面積較竣工圖少。經省水利勘測設計研究院復核計算,中聯孔及邊聯孔底板的實際配筋面積均小于計算值,底板強度不強度規范要我國平原地區修建了許多低水頭水閘,其中不少水閘的閘門在過水時發生程度不等的振動。據1966年前的統計,江蘇省有23座水閘在過流時發生過閘門振動,其中弧形門閘14座。振動較為嚴重的是嶂山閘,它共有36孔,每孔凈寬10米,有8孔弧形閘門發生過振動。當閘門振動時,不但閘門上工作橋、公路橋跟著振動,離閘門幾百米的閘管所門窗玻璃也都發生響聲。又如河南省三義寨閘,它的弧形門曾發生過強烈的振動,公路橋也伴隨著振動,并且發出類似卡車發動時的轟鳴聲。 顯然,閘門振動是很不利的。那怕是不很嚴重的振動也將使材料疲勞;的閘門振動使構件出現裂紋、弧形門的支臂失穩,后致使閘門損壞。為了避免這種情況發生,好在設計階段就能考慮到水流引起閘門振動的間題。如果已建成的水閘閘門發生振動,則要設法采取措施,使振動減到小的程度。這些,都要了解引起閘門振動的原因,針對這些原因提出抑振措施。 從調查中得出,低水頭水閘的閘門振動大多數發生在閘上
卷揚啟閉機廠家大理巍山水電站閘門關于閘門振動的研究工作,國外早在30年代就已開始,我國自50年代以來也取得了一定的進展。但是,由于影響閘門振動的因素很多,特別是閘門在水中的振動屬流體彈性理論范疇,國內在這方面的理論研究成果尚不多,模型試驗因模型律存在問題,還不能完整地重演原型中的振動現象,原型觀測又常受外界條件的,也難于從各個觀測資料中概括出的規律性。因此,可以說我國關于閘門振動的研究尚處于階段,尚無一套成熟的理論和計算可供設計參改。本文擬對國內的研究現狀作概略的介紹和評述,以期推動這一工作的深入開展。一、已取得的若干研究成果 (一)原型現測 國內已有30多項工程的閘門作過振動原型瓏側?,F選擇其中較為典型的實例列于表1。 關于閘門振動危害程度的判別,文獻〔4〕*Pa州kat的。Patrikat認為振動的危害程度取決于振幅與的綜合效應。他在對數座標上將危害程度劃分為、合理、可以采用、稍不、不和很不等6個區域地處黃河懸河段內外高差大的開封北郊柳園口引黃涵閘,位于黃河南大堤里程樁號85+650處,始建于1956年,為五孔涵洞式水閘。該工程設計引水流量為40m3/s,加大引水流量為60m3/s,涵閘孔口高度為2.5m,孔口寬度為2.2m,洞身斷面高度為2.5m,寬度為2.7m,采用平板木質閘門,通過螺桿式啟閉機控制水量。為了適應黃河防汛的需要,后來對工程進行了改建,將洞身向下游接長,由原來的36m,改為60m,原木制閘門改為鋼筋砼閘門,重建消能設施和下游連接建筑物,改建后的閘門運行示意圖見圖1。改建后的涵閘啟閉機運行靈活,在閉門的中,當閘門下落到距底板1.0~1.2m左右時,開始振動。首先是絲杠呈反向緩緩上升,同時帶動整個啟閉機機殼、機座的微小上移,繼而閘門、洞體發出巨大響聲,使整個啟閉機房也有強烈的震動。*以來引起了啟閉機座和機殼多次出現裂縫而報廢,機房墻壁和頂部裂縫、啟閉機地腳螺栓松動、螺桿變形、頂蓋拉斷,嚴重影響涵閘的
卷揚啟閉機廠家大理巍山水電站閘門在水利水電工程中,水工建筑物的振動問題*以來一直難以的解決。其中,尤其是水工閘門的振動是絕大多數水工建筑物的根本原因,由于其結構和工作條件的復雜性,使得其在工程運用中存在著諸多性問題。從閘門事故分析來看,閘門時往往都伴隨著強烈的振動。因此,研究閘門的自振特性對同類產品結構的設計以及安裝具有一定的借鑒意義。1閘門振動產生的原因閘門振動是一種特殊的水力學問題,其振動涉及水流條件、閘門結構以及水流和閘門之間的相互作用,屬流體誘發振動。當閘門開啟泄流時,受周圍邊界條件影響,動水作用于閘門產生脈動壓力,如果水的脈動壓力和閘門的自振相接近,就會激發共振,使得閘門結構發生。2閘門振動特性在國內外的研究現狀閘門振動危害很大,*以來已經有不少學者對其進行了和研究。關于有限元分析以及靜力特性分析方面,謝智雄,周建方通過建立大型弧形閘門的有限元分析模型,應用ANSYS對其在各種工況下的支鉸反力、閘門應力閘墩是水利水電工程中常見的結構物。隨著工作水頭和閘門跨度的增大,弧形閘門應用得愈加廣泛?;⌒伍l門與平板閘門相比,其支承閘墩的工況是比較復雜的。巨大的門腿推力,集中作用在位于墩墻面以外的牛腿上,不僅在墩墻上造成大面積的拉應力區,而且還產生明顯的應力分布的局部效應,以致不適宜將支承閘墩作為二維問題處理。 過去,設計中為了'應力分析方便,在閘墩計算中,都不可避免地要作相當大的簡化假定,致使計算成果與實際情況差異較大。例如,按照材料力學法分析時,不得不將實際上的三維結構假定為平面問題,以便按單寬懸臂梁計算}又如采用彈學求解時,則視閘墩為一邊固結的彈性懸臂平板,而將力作用點從牛腿移至下游角點處,顯然這與實際情況也是有出入的。毋庸置疑,'簡化假定的程度越高,計算精度也相應越低。因此,工程設計中對于重要的、大型的弧形閘門的支承閘墩,一般都要運用三維光彈性實驗應力分析,法,來決定閘墩的選形及鋼筋的配置。 近年來,有限元技術及電子