該環保設備主要由驅動機構、機架、傳動機構、齒耙鏈牽引機構、撒渣機構、電氣控制等構成。由過水量、高度、固液分離總量和所分離的形狀、顆粒大小來選擇柵隙??筛鶕脩粜枰x用材質為ABS工程塑料、尼龍、不銹鋼的耙齒;主體框架有不銹鋼材質和碳鋼防腐兩種。
(1) 格柵本體為整體式結構,在平臺上組裝、調試,空機試運行8小時方可出廠,確保組裝,也可簡化現場安裝工作量。
(6)本機設電器過載保護裝置,當機械發生故障或超負荷時會自動停機并發出,該靈敏可靠。
(3) 鏈條采用的寬鏈板不銹鋼鏈條,鏈條的系數不小于6,并設有鏈輪張緊調節裝置。在鏈槽中運轉時,不需其他阻渣裝置,即可有效防止柵渣纏入鏈槽,避免卡阻現象。
(5) 除污耙齒采用兩種形式,一種為長耙,另一種為短耙。長耙撈渣量大,短耙撈耙干凈*。
(2) 本機在主柵條前加上一道活動的副柵,活動副柵的間距與主柵條*,活動副柵的柵渣由長耙齒撈取,有效防止污水中的柵渣從柵條底部串過和底部的污物的積滯。
1、主要結構
格柵機為根本,以完善的售后服務體系為保障作為不懈追求的目標,永做環保事業道路上的先鋒兵。為造福一個白云、藍天、綠色、環保的盡一份力量!
機械格柵(格柵除污機)是一種可以連續自動流體中各種形狀的雜物,以固液分離為目的裝置,它可以作為一種設備廣泛地應用于城市污水處理、自來水行業、電廠進水口,同時也可以作為紡織、食品加工、造紙、皮革等行業生產工藝中*的設備,回轉式機械格柵又稱格柵除污機。
GDGS型機械格柵除污機(攔污機)是一種可以連續自動攔截并流體中各種形狀雜物的水處理設備,是以固液分離為目的裝置,廣泛地應用于城市污水處理。自來水行業、電廠進水口,同時也可以作為各行業廢水處理工藝中的前級篩分設備。該機械格柵產品已于1996和1999年兩次通過了環??偩值漠a品認定。
(4) 傳動機構安裝于機架頂部,采用擺線針輪減速機,設過扭矩保護裝置(剪切銷),有效防止因超負荷對電機減速機造成損傷。并配置防護罩,拆裝方便。
該機有柵齒、柵齒軸、鏈板等組成柵網,以替代格柵的柵條。柵網在機架內作回轉運動,從而將污水中的懸浮物攔截并不斷分離水中的懸浮物,因而工作效率高、運行平穩、格柵前后水位差小,并且不易堵塞。該機適合于作粗細格柵使用。柵網中的柵齒可用工程塑料或不銹鋼兩種材料制造,柵齒軸和鏈板等由不銹鋼制造,大大了格柵整體的耐腐蝕性能。較小間隙的格柵一般宜用不銹鋼柵齒。設備運行使耙齒把截留在柵面上的雜物自下而上帶至出渣口,當耙齒自上向下轉向運動時,雜物依靠重力自行脫落,從卸料落入輸送機或小車內,然后外運或作進一步的處理。
我國弧形閘門通常采用卷揚機起吊,這種中又分為頂拉、前拉、斜后拉及橫后拉等四種類型. 弧形閘門橫后拉起吊,1971年在廣東省長湖水電站溢洪道弧形閘門上采用,這一起吊的出現,引起國內有關單位的廣泛.與其它各種起吊相比較,這一不僅減小了閘門啟閉力,還能*取消起吊工作平臺架,甚至成功地將固定式平門啟閉機的主體布置在閘墩的腹部.十多年的運行表明:"橫后拉"是一種*的啟閉.筆者根據以往設計長湖電站"橫后拉"的體會和十多年運行,初步總結出"橫后拉"起吊的設計原則及適用范圍. "橫后拉"起吊的 設計原則 弧形閘門"橫后拉"起吊與其它起吊在起吊結構上具有許多不同之處,因而其設計原則也相應不同.在設計中,主要解決好定滑輪組布置的問題和啟閉機位置安排問題,總之,選好定滑輪組的位置,是"橫后拉"起吊的核心所在. (一)確定定滑輪組位置的原則及 1.確定定滑輪組位置的原則.引言鋼絲網水泥薄殼閘門早年較為流行[1],為了研究這種閘門的耐久性與強度,筆者自1993年起對阜陽(亳州)市7座水閘的15扇閘門進行了調查,2000年還對已運行了31年的淮北市濉溪四鋪閘進行了調查[4]。調查時,大多數閘門雖經15~20年的運行,工作狀態仍良好,部分銹蝕嚴重的大多是保護層制不好,振搗不弱密實及沒有涂料保護造成的。近日,筆者回訪了解到,雖有些閘經加固除險已將鋼絲網水泥薄殼閘門更換掉,但部分鋼絲網水泥薄殼閘門仍在工作。如蒙城九里溝,閘門本身而言運行狀況依然良好;也有存在問題的,如闞町引水閘和排澇閘,鋼絲網水泥薄殼閘門盡管還在工作,但已嚴重碳化,鋼筋銹蝕。1調查對象鋼絲網水泥薄殼閘門由鋼絲網水泥薄殼面板及鋼筋混凝土邊構件組成。面板一般采用4網1筋或6網2筋,并在角點有加強措施;水泥砂漿采用300#以上干硬性砂漿。調查時各閘情況如表1所列。表1調查水閘閘門情況一覽表閘名門體尺寸(寬×高)/m殼體跨度(寬×高)/m殼平面鋼閘門是應用早、廣泛的閘門型式之一。因其結構簡單、制造、安裝、方便,有互換性等優點,被廣泛用于水利水電工程的泄水、引水發電、灌溉和航運等。平面鋼閘門是水工建筑物中的重要組成部分,它的和適用,在很大程度上影響著整個水工建筑物的運行效果。閘門如果將會造成十分嚴重的后果,閘門的事故可使整扇閘門,不僅影響工程的使用,甚至威脅到建筑物的,而且在閘門后水庫泄流失控,突然的泄流量會危及下游的[1-5]。平面鋼閘門是要依靠啟閉設備才能在閘孔中運行,而啟閉力的計算為啟閉設備的選型提供依據。本文對中小型平面鋼閘門啟閉力計算問題做些初步的研究,能對中小型平面鋼閘門的設計有一定的借鑒意義。1平面鋼閘門啟閉力計算公式平面鋼閘門啟閉力計算包括啟門力Fw計算和閉門力FQ計算。啟閉力計算時要考慮門重、支承的阻力、止水阻力、門底的上托力、下吸力、門頂的水柱重或加重塊。在設計中要比較準確地計算這些荷載.弧形鋼閘門有啟閉靈活、啟門力小、擋水面積大等優點,已被廣泛應用到較大的進、泄水工程中。但弧形鋼閘門的設計與施工要求精度較高,制作、安裝難度大。經過多年設計施工積累,本人認為在水閘弧形閘門設計施工中應注意以下幾點。一、閘門主要尺寸的確定(一)閘門高寬比的確定一般露頂式弧形鋼閘門門葉的高寬比應控制在卜 左右比較。如果此值過大,將造成主梁尺寸過大以及焊接變形不宜控制、剛度變差、外形不美觀等缺點。在閘門過水斷面不了實際要求時,又相差不多,應優先采取加高門頁高度的辦法來解決,盡量避免用加寬閘門的,當然也可采用閘門孔數的。(二)面板半徑及支鉸位置的確定露頂式弧形鋼閘門面板半徑(R)一般采用R二(1.l-l.5)H(H為閘前正常水位)。如果面板半徑增大,則啟門力相應減小,但閘墩尺寸則要相應加大,否則,反之。在實際設計中可根據具體情況和要求靈活。對于支鉸位置一般應高出下游水位0.5米左右,以其不被泥沙堵塞意義在水田灌溉區系中,輪灌是同一級渠道在一次延續時間內輪流輸水的供水,實行輪灌時,縮短了各條渠系的輸水時間,加大了輸水流量,同時工作的渠道長度較短,從而了輸水損失水量,有利于農業耕作和工作配合,有利于工作效率。但是采用輪灌灌溉的水田地,在支渠向斗渠配水中,分水閘的操作是比較費勁的,需要人在田埂走很遠,打開一級閘門,關一級閘門,造成勞動力緊張。為了發揮輪灌的優勢同時勞動力緊張的情況,采用智能平移式閘門作為輪灌渠道的分水閘閘門,大大了操作效率。為控制灌溉水量,在渠道末端設置水位傳感器,當水位達到設置值時,通過光纜將發送到智能水閘的動力的中,使閘門自動關閉,既能節省勞動力又大大節約了用水,使水資源科學分配。2閘門組成智能平移式閘門,可以解決復雜的人為操作。它是由混凝土底板、閘門、閘門槽、底板部的導向軌道、上部的動力、4根拉桿、拉桿槽及橡膠止水和橡膠套等組成。1)混凝土底板