當前位置:深圳市奧斯恩凈化技術有限公司>>噪聲環境監測系統>>聲源/聲紋識別>> OSEN-ZSW戶外場景AI智能聲音分類識別系統
加工定制 | 否 |
---|
聲明:以上價格不代表實際價格,需要根據實際需求確認后方可定價格,我司配置有很多種,配置高,價格高,有需要請電話咨詢或者在線聯系客服,給您帶來不便請諒解!
聲紋識別,也被稱為說話人識別,是一種生物識別技術,通過轉換聲音信號為電信號,用計算機進行特征提取和身份驗證。其生物學基礎在于生物的語音信號攜帶著獨&特的聲波頻譜,就像指紋一樣具有唯&一性和穩定性。
聲紋識別的主要任務包括:語音信號處理、聲紋特征提取、聲紋建模、聲紋比對、判別決策等。
戶外場景AI智能聲音分類識別系統技術特點
1.噪聲聲音類型識別是指通過機器學習算法,對環境中的噪聲進行分類,以判斷其可能的來源和類型。例如,區分機器噪聲、人聲噪聲、交通噪聲等。
2.AI在噪聲聲音類型識別中的應用主要體現在深度學習技術中,特別是卷積神經網絡的應用。首先,需要收集大量的聲音數據,并利用深度學習算法對這些數據進行訓練,以提取出有用的特征并進行模型優化。然后,將輸入的聲音與已知的聲音模型進行比對,通過計算輸入聲音的特征與模型之間的距離或相似度,來確定輸入聲音的身份。
3.此外,對于特定的應用場景,如室內場景、戶外場景識別,公共場所、辦公室場景識別等,還可以使用專門的音頻處理前端部分。
4.值得注意的是,盡管AI在噪聲聲音類型識別方面有著廣泛的應用前景,但是在實際應用中仍然面臨著許多挑戰,如噪聲環境的復雜性、語音信號的多樣性以及模型的優化等問題。因此,如何提高噪聲聲音類型識別的準確性和魯棒性,仍然是未來研究的重要方向。
戶外場景AI智能聲音分類識別系統技術路線
1.建立音頻樣例庫,覆蓋面廣,根據不同的噪聲監管單位將聲音劃分為五大類,不少于50個聲音子類別;
2.通過深度學習AI技術,對噪聲樣本進行分析和處理,提取出其中的聲紋特征,構建聲紋識別模型;
3.不斷的測試和優化,提高聲紋識別模型的準確性和魯棒性,使其能夠在各種環境和條件下都能準確地識別出聲紋類型;
4.采用深度卷積神經網絡算法實現音頻事件的識別分類。通過卷積操作對音頻進行時域特征和logmel頻域特征的提取,并結合波形的時域特征和頻域特征作為音頻的有效特征,再通過卷積采樣進一步獲取特征圖,最終以全連接網絡分類器實現特征的類別分類。
技術參數
基于Pytorch實現的聲紋識別模型:模型是一種基于深度學習的說話人識別系統,其結構中融入了通道注意力機制、信息傳播和聚合操作。這個模型的關鍵組成部分包括多層幀級別的TDNN 層、一個統計池化層以及兩層句子級別的全連接層,此外還配備了一層 softmax,損失函數為交叉熵。
特征提取:預加重->分加窗->離散傅里葉變換->梅爾濾波器組->逆離散傅里葉變換 -->image
模型訓練集:>10000個訓練樣本
聲音類型:聲音類型主要劃分為五大類別,分別為生活噪聲、施工噪聲、工業噪聲、交通噪聲、自然噪聲,其中包含打雷,刮風,敲擊、蟲鳴鳥叫等不少于50個聲音子類別
聲紋識別準確率:≥85%
識別響應速率:>3s
調用方式:支持云端調用或者本地終端調用
技術協議:支持HTTP協議
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,環保在線對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。