蓄熱式rto
中國是印刷大國,據統計,具有較大規模的企業八萬多家,其中大部分油墨和涂布工業均采用油性涂料作為涂布液,因此導致每年產生的有機廢氣排放量高達幾十萬噸。這些VOCs的排放不僅對人的身體健康造成巨大的傷害,還是原料資源的極大浪費,導致企業生產成本上升和經濟效益下降。本文根據江蘇某材料包裝生產企業含VOCs廢氣的產排特征,采用了“三室RTO+熱能回收”處理工藝應用于企業廢氣的末端處理,取得了良好的經濟效益、環境效益和社會效益。
1、產污環節
企業主要產品包括PET普通煙包轉移膜、OPP鐳射防偽轉移膜、PET鐳射防偽轉移膜等。項目涂布、烘干工段均在涂布機上進行操作,該機由放卷、前放卷張力、糾偏系統、涂布頭、干燥箱(烘箱)、冷卻系統、后收卷糾偏、張力系統、收卷系統組成。涂布頭包括涂布網紋輥、背輥(壓輥)、刮刀、刮刀調節機構。涂布頭是涂布機的核心部分,涂布機的技術能力取決于涂布頭。加熱采用5段式電加熱,GSN熱風循環,溫度140℃。安放在放卷裝置上的基膜(厚度12-18um)經自動糾偏后進入浮輥張力系統,調整前放卷張力后進入涂布頭,調配好的涂料按涂布系統的設定進行連續涂布,涂布后濕膜進入干燥箱(烘箱)由熱風進行干燥,干燥后帶信息涂層的塑料薄膜經冷卻系統冷輥定型后調整系統控制好張力、同時控制好收卷速度(80-100m/min)、使它與涂布速度同步,冷卻后的膜由糾偏系統自動糾偏使其保持在中心位置由收卷裝置進行收卷。
生產過程中會有調配廢氣、涂布廢氣,烘干廢氣產生,主要含有乙酸乙酯、醋酸正丁酯、丁酮、丙二醇甲醚等有機污染物。方案采用了蓄熱式熱氧化爐來治理生產過程中的有機廢氣,并結合余熱回收利用設備,為企業開辟一條既環保又節能的處理工藝路線。
2、設計要點
2.1風量設計
車間調配區采用排風罩收集進行局部通風,排風罩設置在污染物上方,根據公式計算:Q=kphvx;式中:P-排風罩口敞開面的周長,m;H-罩口至污染源距離,m;vx-污染物邊緣控制風速;k-安全系數,一般取1.4。最終確定排放量Q1為1200m3/h。
項目對涂布機頭區域進行密閉,并采用全面通風,全面通風量可根據換氣次數確定,即Q=nV,式中:n-換氣次數,1/h;V-通風房間體積,m3。由于廠房內空間潔凈度等級為7級,根據GB50073-2001規定,換氣次數為15~25次,方案選定n=20,排放量Q2為2400m3/h。
設備烘箱配有熱風循環系統及排放裝置,其排風機額定風量Q=5000m3/h,故兩套生產線合計風量Q3=10000m3/h。綜上所述,Q總=Q1+Q2+Q3=13600m3/h??紤]處理系統留有10%的操作余量,確定進入RTO裝置的廢氣處理能力Q=15000m3/h。
2.2余熱回收系統
根據項目的實際運行情況,收集廢氣的主要污染物為乙酸乙酯溶劑,其濃度為4000mg/ m3,計算可知該股廢氣的熱值為365640kcal/h,維持RTO設備的自運行所需的能量為176023kcal/h,因此可通過換熱器等形式回收VOC氧化后的余熱用于涂布干燥用熱,從而實現設備煙氣排放余熱回收利用的目的,熱量平衡方程式如下:
其余熱回收經濟效益計算公式如下:
189617(富余熱量)×0.7(系統綜合利用率)×24(h/d)×300(d/a)/8500(天然氣熱值)=112432(m3/a);112432(m3/a)×3.65(元/ m3)=41(萬元/a)
上面計算中,效益將隨生產線的實際工作時間(年時基數)變化而變化。
2.3主體設備參數
該企業廢氣中不含鹵素、氮、硫等元素,腐蝕性不強,因此焚燒爐殼體采用6mm厚的Q235B鋼板密封滿焊;蓄熱陶瓷體選用采用LANTECMLM180產品及抗硅填料混合而成,該填料在急熱急冷時具有很好的化學和物理穩定性,還可以改善氣流分布。RTO燃燒室的設計溫度需要燃燒器來維持,項目采用進口品牌霍尼韋爾低壓頭比例調節式天然氣燃燒器,雙電磁閥避免燃料不燃燒而進入爐膛,同時其具有自動吹掃、自動點火、紫外線掃描儀火焰檢測、火焰燃燒狀況監視等功能。設計主要參數如表2所示。
2.4控制系統
完善的自動控制,是安全生產的保障。項目采用DCS系統對RTO本體及熱能回收系統進行自動控制。由于涉及多個功能區,一方面,各區域設備由于生產用能相互關聯;另一方面,設備又具有相對獨立的要求,導致各區域電控連鎖關系較為復雜,其控制要點如下:
(1)停機狀態。RTO原始狀態,超溫安全自動閥位置:密閉,煙氣不經余熱換熱器;新風系統原始狀態,新風管路氣動閥:打開,新風風機啟動,新風始終經過余熱換熱器。
(2)運行狀態。RTO爐內溫度<850℃,超溫安全自動閥密閉;RTO爐內溫度≥850℃,向DCS系統提供高溫信號,超溫安全自動閥(耐溫960℃)打開,高溫煙氣經過余熱換熱器。
(3)熱風溫度過高(>120℃)報警信號。出余熱換熱器后,熱風回風管上設一個溫度探頭。當熱風溫度高于120℃時,給RTO提供高溫報警信號,RTO超溫安全自動閥進行調節,減小經過余熱換熱器的高溫煙氣量。
3、運行效果
項目于2017年通過由環保三同時驗收,廢氣凈化系統出口的檢測結果見表3,結果表明經處理后的各類廢氣污染因子均能達標排放。
4、經濟分析
(1)RTO系統(包括爐體、余熱回收設備、新風風機等)總投資共計160萬元。
(2)RTO系統有新風風機一臺11kW/h,主引風機一臺37kW/h,助燃風機一臺3kW/h,吹掃風機一臺5.5kW/h,控制柜耗電量為1.5kW/h;按每年工作7200h計算,每度電0.75元計算,共計:(58+11)kW/h×7200h×0.75元=37萬元/年。
(3)系統正常運行后,余熱回收經濟效益約為41萬元/年。
生產rto設備廠家
一、RTO工作原理介紹
目前,在國內應用廣泛、工藝技術較為成熟的蓄熱式燃燒分解設備主要為三室RTO,即RTO分為三個蓄熱室,其中蓄熱室填充床為耐熱、耐腐蝕的陶瓷材料填充,確保RTO熱回收率在95%以上,以便更好的實現有機廢氣處理。
其工作原理如下:
有機廢氣被收集后經個蓄熱室進入燃燒室,被點燃的天然氣加熱至760℃以上,氧化分解為CO2和H2O,達到有機廢氣處理目的。凈化后的高溫氣體從第二個蓄熱室排出,同時對該蓄熱室進行加熱。
當第二個蓄熱室被高溫氣體加熱到設定溫度時,切換閥打開,有機廢氣從該蓄熱室進入,在高溫下被氧化分解,從個蓄熱室排放出去,從而對個蓄熱室進行加熱,如此來回切換,實現在充分利用熱能的情況下實現有機廢氣處理。
三個蓄熱室的RTO系統多出一個蓄熱室進入清掃狀態,可有效防止未*分解的極少數有機廢氣逃逸,有機廢氣處理效果更佳。
二、RTO及相關設施危害因素分析
1、企業在原設計中未考慮使用RTO
在增上RTO時,僅考慮RTO裝置本身對處理廢氣的適用性,而成套廢氣治理設備生產廠家僅提供RTO本體裝置部分,對前、后附屬處理設施未進行考慮,企業又未對廢氣治理設備配套進行正規設計,致使情況較為復雜的企業系統運行穩定性不夠,甚至發生事故。
2、材料選擇方面因素
因成本及腐蝕等問題,原料廢氣及放空等管線,中小企業會普遍選擇PVC、玻璃鋼等材料。使用上述材料的企業如原料氣線未考慮防靜電設計,易使靜電積聚,在廢氣濃度超過爆炸極*,管線內發生爆炸。
3、儀表報警、連鎖設施不足
RTO設施生產廠家只考慮本體設施工藝操作上的連鎖,附屬設施及安全設施方面未予充分考慮。比如未在上游廢氣出口設置濃度報警儀,無法及早知道廢氣濃度超標并及時采取措施避免爐堂溫度超高、尾氣溫度同時超高等連鎖反應。
4、系統未設置相應的安全設施
廢氣治理設備未設置相應的安全設施,如原料廢氣線防靜電設施、原料廢氣進RTO前設置阻火器等,容易導致靜電積聚導致爆炸及回火等情況發生。
5、工藝流程設置不合理
企業排放的往往不是單一的有機廢氣,除有機廢氣,經常帶有酸、堿性氣體,或者燃燒后有酸性氣體產生。未設置吸收處理裝置,會導致氣量偏大,腐蝕設備管線,縮短設備、管線使用壽命、廢氣指標不合格。
三、安全對策措施
企業應根據自身實際工況,包括廢氣來源、組成、濃度變化、氣量大小等,根據實際需要增設相應附屬設施和安全設施。著重注意以下幾個方面。
1、去除不宜進入RTO的有機廢氣組分
如采用冷凝方式回收部分高濃度有機廢氣組分;設置水噴淋裝置吸收洗滌酸、堿類氣體,保證進入RTO有機氣體達到進氣指標要求。
2、保證廢氣濃度、氣量相對穩定
在有機廢氣進入RTO前,設置足夠容積的緩沖罐,增加廢氣的停留時問,較好地混合氣體濃度,并根據需要補充風量,避免高濃度、大氣量廢氣直接進入RTO。
3、提高自動化控制程度
對關鍵操作參數實時監測和進行連鎖控制,實時監測風機、閥門、燃燒器、酸堿度、廢氣濃度、爐膛和廢氣管道壓力的參數變化,并按工藝安全要求設置相應連鎖。
4、防止發生回火
緩沖罐至RTO管線等位置設置回火裝置;緊急排放閥宜設置遠程獨立控制,防止在非正常情況下,氣流堵塞,影響上游設置。
5、防止靜電產生
廢氣管線宜采用金屬材質,連接法蘭進行跨接,系統進行可靠接地,防止靜電積聚。
6、防止爆炸危害擴大
廢氣管道設置防爆膜、防止管道堵塞的泄壓閥,緩沖罐上設置泄壓閥,RTO爐膛設防爆口等安全設施,采用防爆風機。