當前位置:山東明基環保設備有限公司>>厭氧反應器>>IC厭氧反應器>> 韓城IC厭氧反應器
材質 | 均可 | 技術工藝 | 其他 |
---|---|---|---|
加工定制 | 是 | 應用領域 | 廢水處理 |
韓城IC厭氧反應器
IC反應器的構造特點是具很大的高徑比,一般可達到4-8,高度可達16-25m,從外觀看,就象一個厭氧生化反應塔。IE反應器從功能上講由四個不同的功能部分組成:
1、混合區:由反應器的底部進入的污水與顆粒污泥和內部氣體循環所帶回的出水效地混合,使進水得到效地稀釋和均化。
2、污泥膨脹床部分:由含高濃度的顆粒污泥膨脹床所構成。床的膨脹或流化是由于進水的上升流速、回流和產生的沼氣所造成。廢水和污泥之間效地接觸使得污泥具高的活性,可獲得高的機負荷和。
3、精處理部分:在這一區域內,由于的污泥負荷率,相對長的水力停留時間和推流的流態性,產生了效的后處理。另外由于沼氣產生的擾動在精處理部分較,使得生物可降解COD幾乎部去除。雖然與UASB反應器條件相比,反應器的負荷率較高,但因內部循環流體不經過這一區域,因此在精處理區的上升流速也較,這兩特點為固體停留提供了條件。
4、回流系統:內部的回流是利用氣提原理,因為在上部和下層的氣室間存在著壓力差?;亓鞯谋壤怯僧a其量所決定的。
大部分機物(BOD和COD)是在IC反應器下部的顆粒污泥膨脹床內降解為生物沼氣的(甲烷),沼氣經由*部分分離器收集,通過氣體升力攜帶水和污泥進入氣體上升管,至位于IE反應器部的液氣分離罐進行液氣分離,水與污泥經過循環下降管流向反應器底部,形成內循環流。*級分離氣的出流在二級(上部)處理區得到后續處理,在此,大部分剩余的可降解的機物(COD和BOD)得到進一步降解,所產生的沼氣被二級分離器收集,出水通過溢流堰流出反應器。
內循環是基于氣體上升原理,通過含氣體的“上升管”和“下降管”介質密度的差別產生的,在此不需水泵實現這一內循環,內循環量(速度)通過上升管內沼氣的含量,即進水中COD濃度的變化實現自我調節。該內循環功能使IE反應器具較靈活的特點,比如:當進水COD負荷增高時,沼氣產量增大,內循環管內氣體上升力增大,經由下降管至下部的循環水進一步稀釋了COD的濃度。反之,當進水COD負荷較小時,較少的沼氣產量產生較小的氣體上升力,使得較小的循環水流至反應器底部稀釋進水COD濃度。由此可見,內循環特點可以在進水COD負荷波動的情況下,實現穩定的COD負荷自動調節。
2、IC反應器優缺特點
IC反應器的特點主要以下幾特點:
(1)容積負荷率高,水力停留時間短。
(2)基建投資省,。由于IC反應器的容積負荷率高,故對于處理相同COD總量的廢水,其體積僅為普通UASB反應器的30-50%左右,降了基建投資。同時由于IC反應器具很大的高徑比,所以占地面積別省,非常適用于一些占地面積緊張的礦企業采用。
(3)節省能耗。由于IC反應器是以自身產生的沼氣作為提升的動力實現混合液的內循環,不必另設水泵實現強制循環,故可節省能耗。
(4)。由于IC反應器實現了內循環,內循環液與進水在*反應室充分混合,使原廢水中的害物質得到充分稀釋,大大降了害程度,從而提高了反應器的耐沖擊負荷的能力。
(5)具緩沖pH值變化的能力。IC反應器可充分利用循環回流的堿度,對pH起緩沖,使反應器內的pH值保持穩定,從而節省進水的投堿量,降運行。
(6)。IC反應器相當于兩級 UASB藝處理,下面一個的機負荷率高,起“粗”處理,上面一個機負荷率,起“精” 處理,故比一般的單級處理的,。、
厭氧過程對環境條件要求比較嚴格:
Ⅰ、氧化還原電位(φE)與溫度
氧的溶入和氧化態、氧化劑的存在:Fe3+、Cr2O72-、NO3-、SO42-、PO43-、H+會使體系中電位升高,對厭氧消化不利。
高溫消化--500~600mv,50~55℃
中溫消化--300~380mv,30~38℃
產酸菌對氧還-還電位要求不甚嚴格+100~-100mv
產甲烷菌對氧還-還電位要求嚴格<-350mv
Ⅱ、pH及堿度
pH主要取決于三個生化階段的平衡狀態,原液本身的pH和發酵系統中產生的CO2分壓(20.3~40.5kpa),正常發酵pH=7.2~7.4,機負荷太大,水解和酸化過程的生化速率大大過產氣速率。將導致水解產物機酸的積累使pH下降,抑制甲烷菌的機能,使氣化速率銳減,所以原液pH=6~8,發酵過程機酸濃度不過3000mg/L為佳(以乙酸計)。
HCO3-及NH3是形成厭氧處理系統堿度的主要原因,高的堿度具較強的緩沖能力,一般要求堿度2000mg/L以上,NH3濃度50~200mg/L為佳。
Ⅲ、毒物--凡對厭氧處理過程起抑制和毒害的物質都可稱為毒物,機酸濃度不應使消化液pH<6.8;不應高于1500mg/L,其它陰離子濃度參見 P148表9-2。
IC 反應器構造原理圖
1.氣液分離器2.集氣管3.二級三相分離器4.沼氣提升管5.
論內循環(IC)厭氧反應器的設計工藝思想
一級三相分離器6.泥水下降管7.進水8.出水區9.精處理區10.
顆粒污泥膨脹床區11.混合區
沼氣氣泡在形成過程中會對液體做膨脹功產生氣提,使
得沼氣、污泥和水的混合液沿沼氣提升管上升至反應器部的氣
液分離器。沼氣與泥水分離被導出處理系統,泥水混合物沿著泥
水下降管進入反應器底部的污泥膨脹床區,形成內循環系統。經
顆粒污泥膨脹床區處理后的污水一部分參與內循環,另一部分進
入精處理區進行剩余COD 的降解,提高并了出水水質。由于
大部分COD 已被降解,所以精處理區的COD負荷較, 產氣量也
小。產生的沼氣由二級三相分離器收集,通過集氣管進入氣液分
離器被導出處理系統。泥水經二級三相分離器后,上清液由
出水區排走,顆粒污泥返回精處理區。
啟動的要特點
①啟動一定要逐步進行,留充裕的時間,并不能期望很短時間進入加料運行達到厭氧降解的目標 。因為啟動實際上是使菌從休眠狀態恢復,即活化的過程。啟動中菌、馴化、增殖過程都在進行,原厭氧污泥中濃度較的甲烷菌的增長速度相對于產酸菌要慢的多。因此,這時負荷一般不能高,時間不能短,每次進料要少,間隔時間要長。
②混合進液濃度一定要控制在較水平,一般COD濃度為1000-5000mg/L,當過5000mg/L,應進行出水循環和加水稀釋至要求。
③若混合液中亞硫酸鹽濃度大于200mg/L時,則亦應稀釋至100mg/L以下才能進液。
④負荷增加操作方式:啟動初期容積負荷可從0.2-0.5kgCOD/m3?d開始,當生物降解能力達到80%以上時,再逐步加大。若負荷進料,厭氧過程仍不正常COD不能消化,則進料間斷時間應延長24h或2-3d,檢查消化降解的主要指標測量VFA濃度,啟動階段VFA應保持在3mmoL/L以下。
⑤當容積負荷走到2.0kgCOD/m3?d后,每次進料負荷可增大,但不過20%,只當進料增大,而VFA濃度且維持不變,或仍維持在﹤3mmoL/L水平時,進料量才能不斷增大進液間隔才能不斷減少。
IC厭氧反應器是繼UASB、EGSB之后的一種厭氧反應器。它通過上下兩層集氣罩把反應器分為上下兩個室,兩個室通過內循環裝置組合在一起。
進入IC厭氧反器的機物大部分在下反應室被消化,所產生的沼氣被下層集氣罩阻隔收集進入提升管,由于提升管內外液體存在密度差,促使發酵液不斷被提升至氣液分離器,分離沼氣后又回流到下反應室,形成了發酵液的連續循環。
鑒于內循環發生在下反應室,故下反應室較高的水力負荷,高水力負荷和高產氣負荷使污泥與機物充分混合,使污泥處于充分的膨脹狀態,傳質速率高,大大提高了厭氧消化速率和機負荷。
上反應室是反應器的負荷區,它只是消化下反應室少量來不及消化的機物,沼氣產量少。產氣負荷,內循環不進入上反應室,上反應室較的產氣負荷和較的水力負荷利于污泥的沉降和滯留,從而能維持反應器內較高的污泥濃度。
由于厭氧消化速率取決于污泥濃度和傳質速率,影響傳質的因素是產氣負荷和水力負荷,它們一方面是強化傳質的重要因素,又是造成污泥流失的根本原因,而IC厭氧應器由于了內循環裝置,改變了產氣負荷與水力負荷的方向,在高負荷下能避免污泥的流失,在一定程度上實現了“高負荷與污泥流失相分離”,從而使IC厭氧反器具比UASB、EGSB更高的機負荷
韓城IC厭氧反應器
I
技術特點
1.容積負荷大:反應器內污泥濃度大,微生物量大,進水機負荷大;
2. 厭氧污泥濃度大,平均污泥濃度為20-40gMLVSS/L;
3.和占地面積;
4.能力大;
5.動力,混合攪拌設備,靠發酵過程中產生的沼氣的上升運動,使污泥床上部的污泥處于懸浮狀態,對下部的污泥層也一定程度的攪動;
6.污泥床不設載體,節省造及避免因填料發生堵塞問題;
7.性好;
8.啟動周期短,反應器內污泥活性大,生物增殖快,為反應器快速啟動提供利條件;
9.沼氣利用值大,反應器產生的生物氣純度大,CH470%~80%,CO220%~30%,其他機物為1%~5%,可作燃料加以利用;
山東明基環保設備有限公司多年來一直堅持“客戶*”的經營理念,用心做事,保護環境。在此,我們鄭重承諾:1、工程竣工后我方對用戶的操作人員進行技術培訓,含污水處理系統工作原理、工藝流程、日常操作規程、常見故障排查等2、污水處理工程竣工后我方為設備正常運行提供一年保修期3、在保修期內,在污水處理站操作管理人員不能排除故障情況下,在接到用戶故障通知后,我會在2小時內給出應急方案,省內24小時(省外48小時)內人員抵達現場對故障進行處理。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,環保在線對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。