詳細介紹
D113弱酸性陽離子交換樹脂批發生產廠家
本產品是在大孔結構的丙烯酸共聚交聯高分子基體上帶有羧酸基(-COOH)的離子交換樹脂,該樹脂具有優良的動力學特性,并且具有再生效率高、酸耗低,工作交換容量大等特點。
本產品相當于美國:Amberlitc IRC-84,德國:Lewatit CNP-80。日本:Diaion WK10,法國:Duolite C-476,前蘇聯:KB-3,捷克:Ostion KM,相當于我國老牌號:D131、D110、D111S、D152。
用途:在水處理中,D113樹脂與001×7配套能十分明顯的除去堿度和硬度,特別是除去碳酸氫鹽,碳酸鹽及其它一些堿性鹽類,主要用于含鹽量較高的水處理;大水量軟化脫堿處理;廢酸廢堿中和;電鍍含銅、鎳廢水處理;以及制藥,食品和制糖等,也可用于廢液的回收和處理,生化的分離和提純。
包裝:編織袋,內襯塑料袋。 塑料桶,內襯塑料袋。
使用時參考指標:
1.PH范圍:5-14
2.允許溫度(℃) ≤100
3..膨脹率:% (H+→Na+)≤65
4.工業用樹脂層高度:m 0.8-2.0
5.再生液濃度:%Hcl:3-6 H2SO4:0.5-1
6.再生劑用量(按計),kg/m3 濕樹脂:HCL 40-60 H2SO4 80-120
7.再生液流速:m/h Hcl:4-8 H2SO4:10-25
8.再生接觸時間:minute:30-45
9.正洗流速:m/h:約20
10.正洗時間:minute:20-30
11.運行流速:m/h: 20-40
12.工作交換容量:mmol/l (濕樹脂)≥2000
主要性能指標:
指標名稱 | D113 | D113-FC | D113-SC |
氫型率% ≥ | 98 | ||
全交換容量 mmol/g≥ | 10.5 | ||
體積交換容量mmol/ml≥ | 4.2 | ||
含水量% | 45-52 | ||
濕視密度g/ml | 0.72-0.8 | ||
濕真密度g/ml | 1.14-1.20 | ||
粒度% | (0.315 | (0.45 | (0.355 |
(< | (< | (< | |
有效粒徑mm | 0.35-0.55 | ≥0.5 | 0.35-0.50 |
均一系數≤ | 1.60 | 1.40 | |
磨后圓球率% ≥ | 90 | ||
轉型膨脹率(H→Na)≤ | 65 | ||
外觀 | 乳白或淡黃色球狀顆粒 | 乳白或淡黃色球狀顆粒 | 乳白或淡黃色球狀顆粒 |
出廠型式 | H | H | H |
用途 | 通用 | 浮動床 | 雙層床 |
一、樹脂的運輸和貯存:離子交換樹脂內含有一定量的水份,在運輸及貯存過程中應盡量保持這部分水份。如果貯存過程中樹脂脫了水,應先用濃食鹽水(8-10%)浸泡1-2小時,再逐漸稀釋,不得直接放于水中,以免樹脂急劇膨脹而破碎。樹脂在貯存或運輸過程中,應保持在5
二、新樹脂的予處理:新樹脂常含有溶劑、未參加聚合反應的物質和少量低聚合物,還可能吸著鐵、鋁、銅等重金屬離子。當樹脂與水、酸、堿或其它溶液相接觸時,上述可溶性雜質就會轉入溶液中,在使用初期污染出水水質。所以,新樹脂在投運前要進行預處理。
1、陽樹脂的預處理陽樹脂的預處理步驟如下:
首先使用飽和食鹽水,取其量約等于被處理樹脂體積的兩倍,將樹脂置于食鹽溶液中浸泡18-20小時,然后放盡食鹽水,用清水漂洗凈,使排出水不帶黃色;其次再用2%-4%NaOH溶液,其量與上相同,在其中浸泡2-4小時(或小流量清洗),放盡堿液后,沖洗樹脂直至排出水接近中性為止;后用5%HCL溶液,其量亦與上述相同,浸泡4-8小時,放盡酸液,用清水漂流至中性待用。
2、陰樹脂的預處理其預處理方法中的步與陽樹脂預處理方法中的步相同;而后用5%HCL浸泡4-8小時,然后放盡酸液,用水清洗至中性;而后用2%-4% NaOH溶液浸泡4-8小時后,放盡堿液,用清水洗至中性待用
D113弱酸性陽離子交換樹脂批發生產廠家 樹脂的密度與它的交聯度和交換基團的性質有關。
例如,高果糖漿是從玉米中提取淀粉。
容易在溶液中離解出H+,故呈強酸性。
首先區分為陽離子樹脂和陰離子樹脂兩大類,它們可分別與溶液中的陽離子和陰離子進行離子交換。通常,交聯度高的樹脂的密度較高,強酸性或強堿性樹脂的密度高于弱酸或弱堿性者,而大孔型樹脂的密度則較低。
水解生成葡萄糖和果糖,經離子交換處理后可制得高果糖漿。
樹脂離解后,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。
陽離子樹脂又分為強酸性和弱酸性兩類,陰離子樹脂又分為強堿性和弱堿性兩類(或再分出中強酸和中強堿性類)。例如,苯乙烯系凝膠型強酸陽離子樹脂的真密度為1.26g/ml,視密度為0.85g/ml;而丙烯酸系凝膠型弱酸陽離子樹脂的真密度為1.19g/ml,視密度為0.75g/ml。
在食品工業中,3)工業離子交換樹脂對新一代的開發和原有質量的提高具有重要作用。
這兩個離子交換樹脂離子交換樹脂反應使樹脂中的H+與溶液中的陽離子互相交換。
倘若水面出現了“彩虹”,那便是石油污染,如若不然,則成為是鐵污染,2.污染的原因,油對樹脂的污染關鍵是因為油吸附在骨架上或替代在樹脂顆粒表面。樹脂的溶解性離子交換樹脂應為不溶性物質。
*的研制成功是一個突出的例子。
強酸性樹脂的離解能力很強,在酸性或堿性溶液中均能離解和產生離子交換作用。
造成樹脂微孔的污染,這一些油的來源是地表水中存在的礦物油,溶解在水處理系統或制做方法進程中,或從蒸汽系統泄漏到原水中等,3.樹脂回收,(1)氫氧化鈉溶液循環清洗該方法基于氫氧化鈉溶液對礦物油的乳化作用,以去除樹脂上的油漬,通常使用溫度為38~40℃的8%~98%~9%氫氧化鈉溶液,從堿液罐(約10m3)流經陰極床和陽極床后,返回堿液罐開展循環清洗,在清洗流程中,補充氫氧化鈉以保持循環液體中氫氧化鈉的濃度,(2)溶劑清洗,用石油醚或200#溶劑汽油清洗樹脂,清潔時注意防火。