晶體老化是因為在生產晶體的時候存在應力、污染物、殘留氣體、結構工藝缺陷等問題。應力要經過一段時間的變化才能穩定,一種叫“應力補償"的晶體切割方法(SC 切割法)使晶體有較好的特性。
短穩:短期穩定度,觀察的時間為1 毫秒、10 毫秒、100 毫秒、1 秒、10 秒。晶振的輸出頻率受到內部電路的影響(晶體的Q 值、元器件的噪音、電路的穩定性、工作狀態等)而產生頻譜很寬的不穩定。測量一連串的頻率值后,用阿倫方程計算。相位噪音也同樣可以反映短穩的情況(要有儀器測量)。
重現性:定義:晶振經長時間工作穩定后關機,停機一段時間t1(如24 小時),開機一段時間t2(如4 小時),測得頻率f1,再停機同一段時間t1,再開機同一段時間t2,測得頻率f2。重現性=(f2-f1)/f2。
頻率壓控范圍:將頻率控制電壓從基準電壓調到規定的終點電壓,石英晶體振蕩器頻率的小峰值改變量。
頻率壓控線性:和理想(直線)函數相比的輸出頻率-輸入控制電壓傳輸特性的一種量度,它以百分數表示整個范圍頻偏的可容許非線性度。
石英晶體振蕩器
⑴直接補償型 直接補償型TCXO是由熱敏電阻和阻容元件組成的溫度補償電路,在振蕩器中與石英晶體振子串聯而成的。在溫度變化時,熱敏電阻的阻值和晶體等效串聯電容容值相應變化,從而抵消或削減振蕩頻率的溫度漂移。該補償方式電路簡單,成本較低,節省印制電路板(PCB)尺寸和空間,適用于小型和低壓小電流場合。但當要求晶體振蕩器精度小于±1pmm時,直接補償方式并不是很適宜。
?、崎g接補償型 間接補償型又分模擬式和數字式兩種類型。模擬式間接溫度補償是利用熱敏電阻等溫度傳感元件組成溫度-電壓變換電路,并將該電壓施加到一支與晶體振子相串接的變容二極管上,通過晶體振子串聯電容量的變化,對晶體振子的非線性頻率漂移進行補償。該補償方式能實現±0.5ppm的高精度。數字化間接溫度補償是在模擬式補償電路中的溫度—電壓變換電路之后再加一級模/數(A/D)變換器,將模擬量轉換成數字量。該法可實現自動溫度補償,使晶體振蕩器頻率穩定度非常高,但具體的補償電路比較復雜,成本也較高,只適用于基地站和廣播電臺等要求高精度化的情況
晶振質量的好壞由什么決定了?有人會說從外觀的嶄新程度分辨,或者是外包裝,又或者產品印字標識。這一切真的能有助于我們分辨晶振的好壞嗎?廣瑞泰知道像晶振這樣的電子元器件拿在手上我們是無法判斷其好壞程度的,通常晶振人所指的壞即是在電路工作中晶振不起振,或者時而穩定時而不穩定的現象!那么這一切現象終究是歸根于質量問題還是晶振參數?
認識晶振的重要性
晶振,全稱晶體振蕩器,它能夠產生處理器(CPU)執行指令所必須要的時鐘頻率信號,CPU一切指令的執行都是建立在這個基礎上的,時鐘信號頻率越高,通常CPU的運行速度也就越快。 凡是包含CPU的電子產品,其中至少含有一個時鐘源,哪怕我們在電路板中看不到實際的振蕩電路,那也是晶振在芯片內部被集成,往往被人們稱之為電路系統的心臟。一旦心臟停止跳動,整塊電路板可能出現癱瘓的狀況。