山東花王新能源工程有限公司
主營產品: 石灰窯二氧化碳回收,化肥廠二氧化碳回收,沼氣回收液態二氧化碳 |
30甲醇精制成套設備
參考價 | 面議 |
具體成交價以合同協議為準
- 型號 30
- 品牌
- 廠商性質 生產商
- 所在地 菏澤市
公司主營產品:
1.鍋爐:立式蒸汽鍋爐、生鍋爐、燃煤蒸汽鍋爐、大型熱水鍋爐、導熱油鍋爐、WNS燃油(氣)蒸汽鍋爐、電加熱熱水鍋爐、電加熱蒸汽鍋爐。
2.非標設備:主要為化工、化肥、煉油、制藥等行業提供非標壓力容器成套設備(二氧化碳成套設備、聚成套設備等)的設計、制造。
3.低溫設備:氧、氬、氮、CO2、LNG液化天然氣儲罐等。
4.氨制冷輔助設備:蒸發冷、貯氨器、低溫循環桶、蒸發器、油氨分離器、虹吸罐、空分、緊急泄氨器、集油器等。
5.儲罐設備:蒸汽、空氣、、液氨、、二甲醚等儲罐。
6.分離、精餾、萃取設備:廢甲醇提純成套設備、二甲醚成套設備、分離溶劑設備、發酵提取全套設備等各種混合物的回收、分離、精餾、萃取。
1工藝技術方案
1.1工藝原理及路線選擇
LNG工廠的工藝主要包括天然氣脫酸、脫水、脫、液化、裝車以及與之相配合的輔助。以下主要介紹天然氣凈化和液化的工藝原理。
1.1.1工藝原理
1.1.1.1天然氣脫酸單元
酸性氣體是指原料氣中的二氧化碳和,本裝置采用溶劑吸收法來脫除酸性氣體,吸收溶劑為活化MDEA水溶液。
MDEA水溶液吸收酸性氣體的原理如下:
二乙醇胺(MDEA),分子式為CH3-N(CH2CH2OH)2,分子量119.2,沸點246~248℃,閃點260℃,凝固點-21℃,汽化潛熱519.16kJ/kg,能與水和醇混溶,微溶于醚。在一定條件下,對二氧化碳等酸性氣體有很強的吸收能力,而且反應熱小,解吸溫度低,化學性質,而不降解。
純MDEA溶液與CO2不發生反應,但其水溶液與CO2可按下式反應:
CO2+H2O==H++HCO3-(1)
H++R2NCH3==R2NCH3H+(2)
式(1)受液膜控制,反應速率極慢,式(2)則為瞬間可逆反應,因此式(1)為MDEA吸收CO2的控制步驟,為加快吸收速率,在MDEA溶液中加入活化劑(R2/NH)后,反應按下式進行:
R2/NH+CO2==R2/NCOOH(3)
R2/NCOOH+R2NCH3+H2O==R2/NH+R2CH3NH+HCO3-(4)
(3)+(4):
R2NCH3+CO2+H2O==R2CH3NH+HCO3-(5)
由式(3)~(5)可知,活化劑吸收了CO2,向液相傳遞CO2,大大加快了反應速度。MDEA分子含有一個叔胺基團,吸收CO2后生成碳酸氫鹽,加熱再生時遠比伯仲胺生成的甲酸鹽所需的熱量低得多。
1.1.1.2天然氣脫水、脫單元
分子篩是一種具有立方晶格的硅鋁酸鹽化合物,主要由硅鋁通過氧橋連接組成空曠的骨架結構,在結構中有很多孔徑均勻的孔道和排列整齊、內表面積很大的空穴。此外還含有電價較低而離子半徑較大的金屬離子和化合態的水。由于水分子在加熱后連續地失去,但晶體骨架結構不變,形成了許多大小相同的空腔,空腔又有許多直徑相同的微孔相連,這些微小的孔穴直徑大小均勻,能把比孔道直徑小的分子吸附到孔穴的內部中來,而把比孔道大得分子排斥在外,因而能把形狀直徑大小不同的分子,極性程度不同的分子,沸點不同的分子,飽和程度不同的分子分離開來,即具有“篩分”分子的作用,故稱為分子篩。
分子直徑小于分子篩晶體孔穴直徑的可以進入分子篩晶體,從而被吸附,否則,被排斥。分子篩還根據不同分子的極性決定優先吸附的次序。一般地,極性強的分子更容易被吸附。
分子篩是人工合成的水合硅鋁酸鹽晶體Mex/m[(Al2O3)x(SiO2)y]·mH2O,分子篩吸附水是一個放熱,溫度有利于放熱的吸附,高溫則有利于吸熱的脫附。溫度低,水的平衡吸附容量高;反之,則低。正是利用該特性,使得在變溫和變壓時實現分子篩吸附水和解吸水而重復使用。
分子篩脫水屬于吸附法脫水,一般用于水要求控制較低的,其深度可達到-76℃,含水量在1ppm以下。
在低溫下會對鋁制設備和管道造成嚴重腐蝕,因此必須脫除。本裝置采用浸硫活性炭來脫除原料氣中的。
1.1.1.3天然氣液化單元
凈化后的天然氣主要成分為,從的PH圖上可以看出,常壓下的天然氣冷卻到-162℃時將冷凝變成;較高壓力下的將在較高溫度下液化,過冷和降壓后液化。正是利用此原理,可以采用多種液化制冷循環,將天然氣冷卻、冷凝和過冷到-162℃,生產液化天然氣(LNG)。
天然氣液化為低溫。天然氣液化所需冷量是靠外加制冷循環來提供,配備的制冷就是要使得換熱器達到小的冷、熱流之溫差,并因此*的制冷效率。
天然氣液化的制冷已非常成熟,常用的工藝有:階式制冷循環、混合冷劑制冷循環、機制冷循環。
(1)階式制冷循環
階式制冷循環1939年首先應用于液化天然氣產品,裝于美國的Cleveland,采用NH3、C2H4為、第二級制冷劑。經典階式制冷循環由三個的制冷組成。級采用丙烷做制冷劑,經過凈化的天然氣在丙烷冷卻器中冷卻到-35~-40℃,離出戊烷以上的重烴后進入第二級冷卻。由丙烷冷卻器中蒸發出來的丙烷氣體經壓縮機增壓,水冷卻器冷卻后重新液化,并循環到丙烷冷卻器。第二級采用做制冷劑,天然氣在第二級中被冷卻到-80~-100℃,并被液化后進入第冷卻?;蚶鋮s器蒸發出來的氣體經過增壓、水冷后,在并在丙烷冷卻器中冷卻、液化,循環到或冷卻器。第三級采用做制冷劑,液化天然氣在冷卻器中被過冷到-150~-160℃,然后通過節流閥降壓,溫度降到-162℃后,用泵輸送到LNG貯槽。冷卻器中蒸發出來的氣體經增壓、水冷后,在丙烷冷卻器中冷卻、在冷卻器中液化后,循環到冷卻器。
經典階式制冷循環,包含幾個相對、相互串聯的冷卻階段,由于制冷劑一般使用多級壓縮機壓縮,因而在每個冷卻階段中,制冷劑可在幾個壓力下蒸發,分成幾個溫度等級冷卻天然氣,各個壓力下蒸發的制冷劑進入相應的壓縮機級壓縮。各冷卻階段僅制冷劑不同,操作基本相似。
從發展來看,初興建LNG裝置時就用階式制冷循環的著眼點是:能耗低,技術成熟,無需改變即可移植用于LNG生產。隨著發展要求而陸續興建新的LNG裝置,這時經典的階式制冷循環就出它固有的缺點:
l經典的階式制環由三個的丙烷、、制冷循環復迭而成。機組多(三臺壓縮機)冷劑用量大、級間管路連接復雜,造價高昂;
l為使實際級間操作溫度盡可能與原料天然氣的冷卻曲線(Q-T曲線)貼近,以減少熵增,效率,一般采用9個溫度水平(丙烷、、段各3個)代替3溫度水平(丙烷段-38℃、段-85℃、段-160℃)。如此以來,效率了,但流程十分復雜。
(2)混合冷劑循環
鑒于階式制冷循環裝置的復雜性、高,為此了混合制冷循環(MixedRefrigerantCycle,MRC))用一種制冷劑(一般是烴類混合物,如N2、C1~C5等))其Q-T曲線與原料天然氣接近*。利用混合物部分冷凝的特點來達到所需的不同溫度水平,既保留了階式制冷循環的優點,而且又只有1臺壓縮機,使流程大于簡化,造價也可。
從原則上講,由N2、C1~C5等組成的混合物,其組成比例應依照原料天然氣組成、工藝流程、工藝壓力而異。MRC制冷循環的流程和裝備較階式制冷循環簡單,但它的效率要比9個溫度水平的階式制冷循環低。
可以適當調節混合冷劑的組成比例,使整個液化按冷卻曲線提供所需的冷量。在混合冷劑循環的基礎上,發展成有丙烷預冷的MRC工藝,簡稱C3/MRC工藝,它的效率接近階式循環。此法的原理是分兩段供給冷量:高溫段用丙烷壓縮制冷,按3個溫度水平預冷原料天然氣到~-40℃;低溫段的換熱采用兩種——高壓的混合冷劑與較高溫度的原料氣換熱,低壓的混合冷劑與較低溫度的原料氣換熱。充分體現了熱力學上的特性,從而使效率得以大限度的。
(3)機制冷循環
機制冷循環是指利用高壓制冷劑通過透平機絕熱的克勞德循環制冷來實現天然氣的液化。氣體在機中降溫的同時,能輸出功,可用于驅動流程中的壓縮機。
根據制冷劑的不同,機制冷循環可分為:氮機制冷循環、氮-機制冷循環、天然氣制冷循環。
與階式制冷循環和混合冷劑制冷循環工藝相比,循環流程非常簡單、緊湊,造價略低。起動快,熱態起動2~4小時即可獲得滿負荷產品,運行靈活,適應性強,易于操作和控制,性好,放空不會引起火災或危險。制冷劑采用單組分氣體,因而了像混合冷劑制冷循環工藝那樣的分離和存儲制冷劑的麻煩,也避免了由此帶來的問題,使液化冷箱的更簡化和緊湊。但能耗要比混合冷劑液化流程高40%左右。
為了機制冷循環的功耗,采用N2-CH4雙組分混合氣體代替純N2,發展了N2-CH4機制冷循環。與混合冷劑循環相比,N2-CH4機制冷循環具有起動時間短、流程簡單、控制容易、制冷劑測定和計算方便等優點。同時由于縮小了冷端換熱溫差,它比純氮機制冷循環節省10~20%的動力消耗。
N2-CH4機制冷循環的液化流程由天然氣液化與N2-CH4機制冷兩個各自的部分組成。
在天然氣液化中,經過預處理裝置脫酸氣、脫水后的天然氣,經預冷器冷卻后,在氣液分離器中分離重烴,氣相部分進入液化器進行液化,在過冷器中進行過冷,節流降壓后進入LNG貯槽。
在N2-CH4制冷中,制冷劑N2-CH4經循環壓縮機和增壓機(制動壓縮機)壓縮到工作壓力,經水冷卻器冷卻后,進入預冷器被冷卻到機的入口溫度。一部分制冷劑進入機到循環壓縮機的入口壓力,與返流制冷劑混合后,作為液化器的冷源,回收的功用于驅動增壓機;另外一部分制冷劑經液化器和過冷器冷凝和過冷后,經節流閥節流降溫后返流,為過冷器提供冷量。
機制冷流程中,由于換熱器的傳熱溫差很大,可采用預冷的對制冷劑和天然氣進行預冷,則液化的能耗可大幅度。
1.1.2液化工藝路線選擇
根據以上流程的不同特點,結合本天然氣液化裝置液化量不大,從能耗、工藝的復雜程度、操作和的方便性來說,采用不帶預冷的混合冷劑液化流程在技術上是*成熟的、可行的和合理的,經濟性也是佳的。
1.2裝置工藝特點
本裝置的主要工藝特點:
1)采用活化胺法(aMDEA)脫酸氣(CO2和H2S),較其他類型的胺法具有發泡小、腐蝕性小、胺液損失小等特點。
2)胺法脫碳裝置產品氣凈化度高,產品氣中CO2含量低可降到1ppm。
3)采用進口MDEA溶液,具有不易發泡、不易降解、胺液損失小、腐蝕小、對CO2攜帶量大、天然氣損失小等特點。
4)采用分子篩吸附,可以深度脫水,即使在低水汽分壓下仍具有很高吸附特性。
5)氣流分布器的吸附塔,能氣流更加均勻分布,可以吸附塔內氣體呈流狀態,吸附劑有效利用率達到98%以上。
6)采用浸硫活性炭來脫除,脫后的天然氣中含量不大于0.01μg/m3;
7)采用密相裝填技術可吸附劑的堆密度(6~10%),裝置中吸附劑產生的死空間,避免氣體在吸附床中存在的溝流,了吸附劑利用率;避免吸附劑粉化吸附劑使用壽命。
8)液化和制冷所選擇的工藝為MRC(混合冷劑)循環制冷,其能耗低,本是目前常用的制冷中能耗低的,使產品價格具有市場競爭力。并且采用板翅式換熱器,使冷箱結構緊湊,方便工廠內組裝和整體運輸到現場。
1.3工藝流程簡述
1.3.1原料氣過濾計量單元
1.3.1.1單元功能
天然氣中可能存在機械雜質或,為防止這些對LNG裝置造成損害,設置過濾設備對這些進行脫除。為裝置的正常運行,采用調壓器將原料天然氣的壓力調制,以后續單元的使用。設置孔板流量計進行原料氣量的計量。由于原料氣量的貿易計量是以供方的計量為準,因此不設置高精度的渦輪流量計或超聲波流量計。
1.3.1.2設計參數
處量:5×104m3/d;
操作壓力:0.5MPa
操作溫度:20℃;
過濾器過濾精度:<1μm;
1.3.1.3流程描述
原料氣經過加熱后調壓器穩壓,經過過濾分離器,分離雜質后,將天然氣送入后續單元。
1.3.2天然氣脫酸氣單元
1.3.2.1單元功能
天然氣中含有的H2S和CO2統稱為酸性氣體,它們的存在會造成金屬腐蝕、污染,并在低溫下產生冰凍而堵塞管道和設備。此外,CO2含量過高,會天然氣的熱值。因此,必須嚴格控制天然氣中酸性組分的含量,以達到工藝和LNG產品的要求。
1.3.2.2設計參數
原料氣進口流量5×104m3/d
吸收塔操作壓力5MPa
吸收塔操作溫度35~45℃
再生塔的操作壓力0.03MPa
再生塔的操作溫度~115℃
凈化氣中CO2氣體的含量≤50ppm(V)
凈化氣中H2S氣體的含量≤4ppm(V)
1.3.2.3流程描述
從原料氣過濾單元來的原料氣從吸收塔下部進入,自下而上通過吸收塔;再生后的MDEA溶液(貧液)從吸收塔上部進入,自上而下通過吸收塔,逆向流動的MDEA溶液和天然氣在吸收塔內充分,氣體中的H2S和CO2被吸收而進入液相,未被吸收的組份從吸收塔頂部引出,依次進入原料氣/凈化氣換熱器,再進入聚結式過濾器分離微小液滴,出過濾分離器的氣體進入原料氣干燥單元。
吸收了H2S和CO2的MDEA溶液稱富液,富液經過過濾除去固體雜質和輕油后,與再生塔底部的溶液(貧液)在貧/富液換熱器中換熱后,升溫到95~100℃去再生塔頂部,在再生塔進行汽提再生,直至貧液的貧液度達到指標。
出再生塔的貧液經過依次經過貧/富液換熱器、貧液冷卻器冷卻到~40℃,進入貧液泵增壓,大部分進入吸收塔頂部來吸收酸性氣體,實現MDEA溶液的循環。
再生塔頂部餾出的氣體經塔頂冷卻器,出再生塔的氣體經過固體脫硫劑脫硫后,直接大氣。冷凝液從塔頂冷凝器回流至再生塔,維持脫酸氣單元的水平衡。
再生塔再沸器的熱源由來自導熱油爐的導熱油提供。
水平衡由脫鹽水補充。
1.3.3天然氣脫水、脫單元
1.3.3.1單元功能
天然氣中水分的存在往往會造成嚴重的后果,水分與天然氣在一定條件下形成水合物阻塞管路,影響冷卻液化;由于天然氣液化溫度低,水的存在還會設備凍堵,故必須脫水。天然氣中的存在往往會造成嚴重的后果,在低溫狀態下,會對液化冷箱內的鋁制設備、管道以及閥門造成腐蝕,影響設備的運行,故必須脫。
1.3.3.2設計參數
原料氣進口流量5×104m3/d
操作壓力4.9MPa
操作溫度~35℃
凈化氣中H2O的含量≤1ppm(V)
凈化氣中Hg的含量≤0.01μg/m3
1.3.3.3流程描述
原料氣從干燥器頂部進入,通過分子篩床層吸附脫除水分后,從干燥器底部出來,干燥后天然氣中含水量≤1ppm(V),之后進入天然氣脫單元。
干燥單元設兩臺干燥器,在給定的吸附周期內,一臺處于吸附狀態來脫除原料氣中的水分,第二臺處于再生狀態(加熱然后冷卻)來解吸分子篩中的水分。當處于吸附狀態的干燥器飽和后,切換到再生完畢的干燥器。每臺干燥器的完整循環周期為16h,吸附狀態8h、加熱狀態4.5h、冷卻狀態3h、切換備用狀態0.5h。兩個干燥器切換使用。
再生氣為脫水后經過升壓的干燥氣,進入再生氣加熱器加熱到250℃。熱的、干燥的氣體從下而上通過再生狀態(加熱)的干燥器,解吸分子篩中的水分。從再生狀態(加熱)的干燥器出來的、濕的再生氣進入再生氣冷卻器連續冷卻,在再生氣分離器中分離冷凝水,該冷凝通過液位控制閥排放。從再生氣分離器頂部出來的氣體與原料天然氣一起進入吸附狀態的干燥器。在再生狀態的干燥器加熱4.5h后,同路徑的氣流旁通再生氣加熱器(再生氣加熱器不工作),干燥氣體以同樣路徑通過再生狀態的干燥器,使該干燥器進入冷卻階段。
從原料氣干燥后的天然氣進入脫器,在脫劑的作用下脫。從脫器出來的天然氣的含量小于0.01μg/m3。
設置了一臺脫器,脫器中的浸硫活性炭可以使用3年以上。
設置2臺粉塵過濾器,1用1備,根據阻力指示進行切換。從脫器出來的原料氣,進入粉塵過濾器過濾分子篩和活性炭的粉塵,之后進入液化單元。
1.鍋爐:立式蒸汽鍋爐、生鍋爐、燃煤蒸汽鍋爐、大型熱水鍋爐、導熱油鍋爐、WNS燃油(氣)蒸汽鍋爐、電加熱熱水鍋爐、電加熱蒸汽鍋爐。
2.非標設備:主要為化工、化肥、煉油、制藥等行業提供非標壓力容器成套設備(二氧化碳成套設備、聚成套設備等)的設計、制造。
3.低溫設備:氧、氬、氮、CO2、LNG液化天然氣儲罐等。
4.氨制冷輔助設備:蒸發冷、貯氨器、低溫循環桶、蒸發器、油氨分離器、虹吸罐、空分、緊急泄氨器、集油器等。
5.儲罐設備:蒸汽、空氣、、液氨、、二甲醚等儲罐。
6.分離、精餾、萃取設備:廢甲醇提純成套設備、二甲醚成套設備、分離溶劑設備、發酵提取全套設備等各種混合物的回收、分離、精餾、萃取。
1工藝技術方案
1.1工藝原理及路線選擇
LNG工廠的工藝主要包括天然氣脫酸、脫水、脫、液化、裝車以及與之相配合的輔助。以下主要介紹天然氣凈化和液化的工藝原理。
1.1.1工藝原理
1.1.1.1天然氣脫酸單元
酸性氣體是指原料氣中的二氧化碳和,本裝置采用溶劑吸收法來脫除酸性氣體,吸收溶劑為活化MDEA水溶液。
MDEA水溶液吸收酸性氣體的原理如下:
二乙醇胺(MDEA),分子式為CH3-N(CH2CH2OH)2,分子量119.2,沸點246~248℃,閃點260℃,凝固點-21℃,汽化潛熱519.16kJ/kg,能與水和醇混溶,微溶于醚。在一定條件下,對二氧化碳等酸性氣體有很強的吸收能力,而且反應熱小,解吸溫度低,化學性質,而不降解。
純MDEA溶液與CO2不發生反應,但其水溶液與CO2可按下式反應:
CO2+H2O==H++HCO3-(1)
H++R2NCH3==R2NCH3H+(2)
式(1)受液膜控制,反應速率極慢,式(2)則為瞬間可逆反應,因此式(1)為MDEA吸收CO2的控制步驟,為加快吸收速率,在MDEA溶液中加入活化劑(R2/NH)后,反應按下式進行:
R2/NH+CO2==R2/NCOOH(3)
R2/NCOOH+R2NCH3+H2O==R2/NH+R2CH3NH+HCO3-(4)
(3)+(4):
R2NCH3+CO2+H2O==R2CH3NH+HCO3-(5)
由式(3)~(5)可知,活化劑吸收了CO2,向液相傳遞CO2,大大加快了反應速度。MDEA分子含有一個叔胺基團,吸收CO2后生成碳酸氫鹽,加熱再生時遠比伯仲胺生成的甲酸鹽所需的熱量低得多。
1.1.1.2天然氣脫水、脫單元
分子篩是一種具有立方晶格的硅鋁酸鹽化合物,主要由硅鋁通過氧橋連接組成空曠的骨架結構,在結構中有很多孔徑均勻的孔道和排列整齊、內表面積很大的空穴。此外還含有電價較低而離子半徑較大的金屬離子和化合態的水。由于水分子在加熱后連續地失去,但晶體骨架結構不變,形成了許多大小相同的空腔,空腔又有許多直徑相同的微孔相連,這些微小的孔穴直徑大小均勻,能把比孔道直徑小的分子吸附到孔穴的內部中來,而把比孔道大得分子排斥在外,因而能把形狀直徑大小不同的分子,極性程度不同的分子,沸點不同的分子,飽和程度不同的分子分離開來,即具有“篩分”分子的作用,故稱為分子篩。
分子直徑小于分子篩晶體孔穴直徑的可以進入分子篩晶體,從而被吸附,否則,被排斥。分子篩還根據不同分子的極性決定優先吸附的次序。一般地,極性強的分子更容易被吸附。
分子篩是人工合成的水合硅鋁酸鹽晶體Mex/m[(Al2O3)x(SiO2)y]·mH2O,分子篩吸附水是一個放熱,溫度有利于放熱的吸附,高溫則有利于吸熱的脫附。溫度低,水的平衡吸附容量高;反之,則低。正是利用該特性,使得在變溫和變壓時實現分子篩吸附水和解吸水而重復使用。
分子篩脫水屬于吸附法脫水,一般用于水要求控制較低的,其深度可達到-76℃,含水量在1ppm以下。
在低溫下會對鋁制設備和管道造成嚴重腐蝕,因此必須脫除。本裝置采用浸硫活性炭來脫除原料氣中的。
1.1.1.3天然氣液化單元
凈化后的天然氣主要成分為,從的PH圖上可以看出,常壓下的天然氣冷卻到-162℃時將冷凝變成;較高壓力下的將在較高溫度下液化,過冷和降壓后液化。正是利用此原理,可以采用多種液化制冷循環,將天然氣冷卻、冷凝和過冷到-162℃,生產液化天然氣(LNG)。
天然氣液化為低溫。天然氣液化所需冷量是靠外加制冷循環來提供,配備的制冷就是要使得換熱器達到小的冷、熱流之溫差,并因此*的制冷效率。
天然氣液化的制冷已非常成熟,常用的工藝有:階式制冷循環、混合冷劑制冷循環、機制冷循環。
(1)階式制冷循環
階式制冷循環1939年首先應用于液化天然氣產品,裝于美國的Cleveland,采用NH3、C2H4為、第二級制冷劑。經典階式制冷循環由三個的制冷組成。級采用丙烷做制冷劑,經過凈化的天然氣在丙烷冷卻器中冷卻到-35~-40℃,離出戊烷以上的重烴后進入第二級冷卻。由丙烷冷卻器中蒸發出來的丙烷氣體經壓縮機增壓,水冷卻器冷卻后重新液化,并循環到丙烷冷卻器。第二級采用做制冷劑,天然氣在第二級中被冷卻到-80~-100℃,并被液化后進入第冷卻?;蚶鋮s器蒸發出來的氣體經過增壓、水冷后,在并在丙烷冷卻器中冷卻、液化,循環到或冷卻器。第三級采用做制冷劑,液化天然氣在冷卻器中被過冷到-150~-160℃,然后通過節流閥降壓,溫度降到-162℃后,用泵輸送到LNG貯槽。冷卻器中蒸發出來的氣體經增壓、水冷后,在丙烷冷卻器中冷卻、在冷卻器中液化后,循環到冷卻器。
經典階式制冷循環,包含幾個相對、相互串聯的冷卻階段,由于制冷劑一般使用多級壓縮機壓縮,因而在每個冷卻階段中,制冷劑可在幾個壓力下蒸發,分成幾個溫度等級冷卻天然氣,各個壓力下蒸發的制冷劑進入相應的壓縮機級壓縮。各冷卻階段僅制冷劑不同,操作基本相似。
從發展來看,初興建LNG裝置時就用階式制冷循環的著眼點是:能耗低,技術成熟,無需改變即可移植用于LNG生產。隨著發展要求而陸續興建新的LNG裝置,這時經典的階式制冷循環就出它固有的缺點:
l經典的階式制環由三個的丙烷、、制冷循環復迭而成。機組多(三臺壓縮機)冷劑用量大、級間管路連接復雜,造價高昂;
l為使實際級間操作溫度盡可能與原料天然氣的冷卻曲線(Q-T曲線)貼近,以減少熵增,效率,一般采用9個溫度水平(丙烷、、段各3個)代替3溫度水平(丙烷段-38℃、段-85℃、段-160℃)。如此以來,效率了,但流程十分復雜。
(2)混合冷劑循環
鑒于階式制冷循環裝置的復雜性、高,為此了混合制冷循環(MixedRefrigerantCycle,MRC))用一種制冷劑(一般是烴類混合物,如N2、C1~C5等))其Q-T曲線與原料天然氣接近*。利用混合物部分冷凝的特點來達到所需的不同溫度水平,既保留了階式制冷循環的優點,而且又只有1臺壓縮機,使流程大于簡化,造價也可。
從原則上講,由N2、C1~C5等組成的混合物,其組成比例應依照原料天然氣組成、工藝流程、工藝壓力而異。MRC制冷循環的流程和裝備較階式制冷循環簡單,但它的效率要比9個溫度水平的階式制冷循環低。
可以適當調節混合冷劑的組成比例,使整個液化按冷卻曲線提供所需的冷量。在混合冷劑循環的基礎上,發展成有丙烷預冷的MRC工藝,簡稱C3/MRC工藝,它的效率接近階式循環。此法的原理是分兩段供給冷量:高溫段用丙烷壓縮制冷,按3個溫度水平預冷原料天然氣到~-40℃;低溫段的換熱采用兩種——高壓的混合冷劑與較高溫度的原料氣換熱,低壓的混合冷劑與較低溫度的原料氣換熱。充分體現了熱力學上的特性,從而使效率得以大限度的。
(3)機制冷循環
機制冷循環是指利用高壓制冷劑通過透平機絕熱的克勞德循環制冷來實現天然氣的液化。氣體在機中降溫的同時,能輸出功,可用于驅動流程中的壓縮機。
根據制冷劑的不同,機制冷循環可分為:氮機制冷循環、氮-機制冷循環、天然氣制冷循環。
與階式制冷循環和混合冷劑制冷循環工藝相比,循環流程非常簡單、緊湊,造價略低。起動快,熱態起動2~4小時即可獲得滿負荷產品,運行靈活,適應性強,易于操作和控制,性好,放空不會引起火災或危險。制冷劑采用單組分氣體,因而了像混合冷劑制冷循環工藝那樣的分離和存儲制冷劑的麻煩,也避免了由此帶來的問題,使液化冷箱的更簡化和緊湊。但能耗要比混合冷劑液化流程高40%左右。
為了機制冷循環的功耗,采用N2-CH4雙組分混合氣體代替純N2,發展了N2-CH4機制冷循環。與混合冷劑循環相比,N2-CH4機制冷循環具有起動時間短、流程簡單、控制容易、制冷劑測定和計算方便等優點。同時由于縮小了冷端換熱溫差,它比純氮機制冷循環節省10~20%的動力消耗。
N2-CH4機制冷循環的液化流程由天然氣液化與N2-CH4機制冷兩個各自的部分組成。
在天然氣液化中,經過預處理裝置脫酸氣、脫水后的天然氣,經預冷器冷卻后,在氣液分離器中分離重烴,氣相部分進入液化器進行液化,在過冷器中進行過冷,節流降壓后進入LNG貯槽。
在N2-CH4制冷中,制冷劑N2-CH4經循環壓縮機和增壓機(制動壓縮機)壓縮到工作壓力,經水冷卻器冷卻后,進入預冷器被冷卻到機的入口溫度。一部分制冷劑進入機到循環壓縮機的入口壓力,與返流制冷劑混合后,作為液化器的冷源,回收的功用于驅動增壓機;另外一部分制冷劑經液化器和過冷器冷凝和過冷后,經節流閥節流降溫后返流,為過冷器提供冷量。
機制冷流程中,由于換熱器的傳熱溫差很大,可采用預冷的對制冷劑和天然氣進行預冷,則液化的能耗可大幅度。
1.1.2液化工藝路線選擇
根據以上流程的不同特點,結合本天然氣液化裝置液化量不大,從能耗、工藝的復雜程度、操作和的方便性來說,采用不帶預冷的混合冷劑液化流程在技術上是*成熟的、可行的和合理的,經濟性也是佳的。
1.2裝置工藝特點
本裝置的主要工藝特點:
1)采用活化胺法(aMDEA)脫酸氣(CO2和H2S),較其他類型的胺法具有發泡小、腐蝕性小、胺液損失小等特點。
2)胺法脫碳裝置產品氣凈化度高,產品氣中CO2含量低可降到1ppm。
3)采用進口MDEA溶液,具有不易發泡、不易降解、胺液損失小、腐蝕小、對CO2攜帶量大、天然氣損失小等特點。
4)采用分子篩吸附,可以深度脫水,即使在低水汽分壓下仍具有很高吸附特性。
5)氣流分布器的吸附塔,能氣流更加均勻分布,可以吸附塔內氣體呈流狀態,吸附劑有效利用率達到98%以上。
6)采用浸硫活性炭來脫除,脫后的天然氣中含量不大于0.01μg/m3;
7)采用密相裝填技術可吸附劑的堆密度(6~10%),裝置中吸附劑產生的死空間,避免氣體在吸附床中存在的溝流,了吸附劑利用率;避免吸附劑粉化吸附劑使用壽命。
8)液化和制冷所選擇的工藝為MRC(混合冷劑)循環制冷,其能耗低,本是目前常用的制冷中能耗低的,使產品價格具有市場競爭力。并且采用板翅式換熱器,使冷箱結構緊湊,方便工廠內組裝和整體運輸到現場。
1.3工藝流程簡述
1.3.1原料氣過濾計量單元
1.3.1.1單元功能
天然氣中可能存在機械雜質或,為防止這些對LNG裝置造成損害,設置過濾設備對這些進行脫除。為裝置的正常運行,采用調壓器將原料天然氣的壓力調制,以后續單元的使用。設置孔板流量計進行原料氣量的計量。由于原料氣量的貿易計量是以供方的計量為準,因此不設置高精度的渦輪流量計或超聲波流量計。
1.3.1.2設計參數
處量:5×104m3/d;
操作壓力:0.5MPa
操作溫度:20℃;
過濾器過濾精度:<1μm;
1.3.1.3流程描述
原料氣經過加熱后調壓器穩壓,經過過濾分離器,分離雜質后,將天然氣送入后續單元。
1.3.2天然氣脫酸氣單元
1.3.2.1單元功能
天然氣中含有的H2S和CO2統稱為酸性氣體,它們的存在會造成金屬腐蝕、污染,并在低溫下產生冰凍而堵塞管道和設備。此外,CO2含量過高,會天然氣的熱值。因此,必須嚴格控制天然氣中酸性組分的含量,以達到工藝和LNG產品的要求。
1.3.2.2設計參數
原料氣進口流量5×104m3/d
吸收塔操作壓力5MPa
吸收塔操作溫度35~45℃
再生塔的操作壓力0.03MPa
再生塔的操作溫度~115℃
凈化氣中CO2氣體的含量≤50ppm(V)
凈化氣中H2S氣體的含量≤4ppm(V)
1.3.2.3流程描述
從原料氣過濾單元來的原料氣從吸收塔下部進入,自下而上通過吸收塔;再生后的MDEA溶液(貧液)從吸收塔上部進入,自上而下通過吸收塔,逆向流動的MDEA溶液和天然氣在吸收塔內充分,氣體中的H2S和CO2被吸收而進入液相,未被吸收的組份從吸收塔頂部引出,依次進入原料氣/凈化氣換熱器,再進入聚結式過濾器分離微小液滴,出過濾分離器的氣體進入原料氣干燥單元。
吸收了H2S和CO2的MDEA溶液稱富液,富液經過過濾除去固體雜質和輕油后,與再生塔底部的溶液(貧液)在貧/富液換熱器中換熱后,升溫到95~100℃去再生塔頂部,在再生塔進行汽提再生,直至貧液的貧液度達到指標。
出再生塔的貧液經過依次經過貧/富液換熱器、貧液冷卻器冷卻到~40℃,進入貧液泵增壓,大部分進入吸收塔頂部來吸收酸性氣體,實現MDEA溶液的循環。
再生塔頂部餾出的氣體經塔頂冷卻器,出再生塔的氣體經過固體脫硫劑脫硫后,直接大氣。冷凝液從塔頂冷凝器回流至再生塔,維持脫酸氣單元的水平衡。
再生塔再沸器的熱源由來自導熱油爐的導熱油提供。
水平衡由脫鹽水補充。
1.3.3天然氣脫水、脫單元
1.3.3.1單元功能
天然氣中水分的存在往往會造成嚴重的后果,水分與天然氣在一定條件下形成水合物阻塞管路,影響冷卻液化;由于天然氣液化溫度低,水的存在還會設備凍堵,故必須脫水。天然氣中的存在往往會造成嚴重的后果,在低溫狀態下,會對液化冷箱內的鋁制設備、管道以及閥門造成腐蝕,影響設備的運行,故必須脫。
1.3.3.2設計參數
原料氣進口流量5×104m3/d
操作壓力4.9MPa
操作溫度~35℃
凈化氣中H2O的含量≤1ppm(V)
凈化氣中Hg的含量≤0.01μg/m3
1.3.3.3流程描述
原料氣從干燥器頂部進入,通過分子篩床層吸附脫除水分后,從干燥器底部出來,干燥后天然氣中含水量≤1ppm(V),之后進入天然氣脫單元。
干燥單元設兩臺干燥器,在給定的吸附周期內,一臺處于吸附狀態來脫除原料氣中的水分,第二臺處于再生狀態(加熱然后冷卻)來解吸分子篩中的水分。當處于吸附狀態的干燥器飽和后,切換到再生完畢的干燥器。每臺干燥器的完整循環周期為16h,吸附狀態8h、加熱狀態4.5h、冷卻狀態3h、切換備用狀態0.5h。兩個干燥器切換使用。
再生氣為脫水后經過升壓的干燥氣,進入再生氣加熱器加熱到250℃。熱的、干燥的氣體從下而上通過再生狀態(加熱)的干燥器,解吸分子篩中的水分。從再生狀態(加熱)的干燥器出來的、濕的再生氣進入再生氣冷卻器連續冷卻,在再生氣分離器中分離冷凝水,該冷凝通過液位控制閥排放。從再生氣分離器頂部出來的氣體與原料天然氣一起進入吸附狀態的干燥器。在再生狀態的干燥器加熱4.5h后,同路徑的氣流旁通再生氣加熱器(再生氣加熱器不工作),干燥氣體以同樣路徑通過再生狀態的干燥器,使該干燥器進入冷卻階段。
從原料氣干燥后的天然氣進入脫器,在脫劑的作用下脫。從脫器出來的天然氣的含量小于0.01μg/m3。
設置了一臺脫器,脫器中的浸硫活性炭可以使用3年以上。
設置2臺粉塵過濾器,1用1備,根據阻力指示進行切換。從脫器出來的原料氣,進入粉塵過濾器過濾分子篩和活性炭的粉塵,之后進入液化單元。