熱電偶測溫原理,方法和適用范圍
1.熱電偶測溫基本原理:
將兩種不同材料的導體(或半導體)A和B焊接起來,構成一個閉合回路,如圖所示。當導體和的兩個接點T1和T2之間存在溫差時,兩者之間便產生電動勢,因而在回路中形成一個電流,這種現象稱為熱電效應。熱電偶/news/xingyexinwen/2013/0416/535.html就是利用這一效應來工作的。
熱電偶原理圖
2.熱電偶的種類
熱電偶可分為標準熱電偶和非標準熱電偶兩大類。所調用標準熱電偶是指國家標準規定了其熱電勢與溫度的關系、允許誤差、并有統一的標準分度表的熱電偶,它有與其配套的顯示儀表可供選用。非標準化熱電偶在使用范圍或數量級上均不及標準化熱電偶,一般也沒有統一的分度表,主要用于某些特殊場合的測量。
標準化熱電偶。我國從1988年1月1日起,熱電偶和熱電阻全部按IEC標準生產,并S、B、E、K、R、J、T七種標準化熱電偶為我國統一設計型熱電偶。
3.熱電偶的結構形式
為了保證熱電偶可靠、穩定地工作,對它的結構要求如下:①組成熱電偶的兩個熱電極的焊接必須牢固;②兩個熱電極彼此之間應很好地絕緣,以防短路;③補償導線與熱電偶自由端的連接要方便可靠;保護套管應能保證熱電極與有害介質充分隔離。
4.優點:
熱電偶是實驗室zui常用的溫度檢測元件之一,為接觸式。其優點是:
a測量精度高。因熱電偶直接與被測對象接觸,不受中間介質的影響。
b測量范圍廣。常用的熱電偶從-50~+1600℃均可邊續測量,某些特殊熱電偶zui低可測到-269℃(如金鐵鎳鉻),zui高可達+2800℃(如鎢-錸)
c構造簡單,使用方便。熱電偶通常是由兩種不同的金屬絲組成,而且不受大小和開頭的限制,外有保護套管,用起來非常方便。.
紅外測溫原理,方法和適用范圍
1.紅外測溫原理
物體處于零度以上時,因為其內部帶電粒子的運動,以不同波長的電磁波形式,向外輻射能量,波長涉及紫外、可見、紅外光區,但主要處于0.8-0.15µm的近、中、外紅外區。物體的紅外輻射能量的大小及其按波長的分布與它的表面溫度有著十分密切的關系。因此,通過對物體自身輻射的紅外能量的測量,便能準確地測定它的表面溫度,這就是紅外輻射測溫所依據的客觀基礎。
2.紅外測溫儀器結構
紅外測溫儀由光學系統、光電探測器、信號放大器及信號處理、顯示輸出等部分組成。光學系統匯集其視場內的目標紅外輻射能量,視場的大小由測溫儀的光學零件以及位置決定。紅外能量聚焦在光電探測儀上并轉變為相應的電信號。該信號經過放大器和信號處理電路按照儀器內部的算法和目標發射率校正后轉變為被測目標的溫度值。除此之外,還應考慮目標和測溫儀所在的環境條件,如溫度、氣氛、污染和干擾等因素對性能指標的影響及修正方法。
3.紅外測溫儀器種類
紅外測溫儀根據原理可分為單色測溫儀和雙色測溫儀(輻射比色測溫儀)。對于單色測溫儀,在進行測溫時,被測目標面積應充滿測溫儀視場。建議被測目標尺寸超過視場大小的50%為好。如果目標尺寸小于視場,背景輻射能量就會進入測溫儀的視聲符支干擾測溫讀數,造成誤差。相反,如果目標大于測溫儀的視場,測溫儀就不會受到測量區域外面的背景影響。對于比色測溫儀,其溫度是由兩個獨立的波長帶內輻射能量的比值來確定的。因此當被測目標很小,不充滿視場,測量通路上存在煙霧、塵埃、阻擋,對輻射能量有衰減時,都不對測量結果產生重大影響。對于細小而又處于運動或震動之中的目標,比色測溫儀是*選擇。這是由于光線直徑小,有柔性,可以在彎曲、阻擋和折疊的通道上傳輸光輻射能量。
紅外測溫儀是通過接收目標物體發射、反射和傳導的能量來測量其表面溫度。測溫儀內的探測元件將采集的能量信息輸送到微處理器中進行處理,然后轉換成溫度讀數顯示。在帶激光瞄準器的型號中,激光瞄準器只做瞄準使用。其性能說明下表。
測溫范圍-32℃--400℃顯示分辯率0.1℃(<199.1℃時)
精度23℃時±1%工作環境溫度范圍0--50℃
重復性23℃時±1%相對濕度30℃時10—95%
響應時間500ms電源9V
響應光譜7-18micron尺寸137×41×196mm
zui大值顯示Have重量270g
發射率0.95Preset――――
熱電偶測溫和紅外測溫比較
測溫方法測溫原理傳感器和儀表特點測溫范圍(℃)
接觸式金屬熱電偶的熱電勢銅-康銅(分度號T)0-200℃是zui準確的,精度高,低溫靈敏度高-200—350
鐵-康銅(分度號J)100℃以下線性好,有較高靈敏度。-40—600
非接觸式熱輻射能量變化部分輻射法由光電池、光敏電阻及其它紅外探測元件作熱敏元件,因它們有一定的光譜選擇性,故非全光譜的因儀表的工作波段可選擇,因此可以避開中間介質的吸收峰-50--3000
比色法比較二個光波輻射能量之比反應速度快,接近真實溫度,受中間介質的影響小50—2000
結論
綜上所述,接觸式測溫儀表測溫儀表(熱電偶測溫方法)比較簡單、可靠,測量精度較高;但因測溫元件與被測介質需要進行充分的熱交換,需要一定的時間才能達到熱平衡,所以存在測溫的延遲現象,同時受耐高溫材料的限制,不能應用于很高的溫度測量。非接觸式儀表測溫(紅外測溫方法)是通過熱輻射原理來測量溫度的,測溫元件不需與被測介質接觸,測溫范圍廣,不受測溫上限的限制,也不會破壞被測物體的溫度場,反應速度一般也比較快;但受到物體的發射率、測量距離、煙塵和水氣等外界因素的影響,其測量誤差較大。由于非接觸式儀表測溫(紅外測溫方法)測試時受外界的影響比較大,加上不能測量內部溫度。在CSA和UL標準中,只是規定了接觸式測溫方法(熱電偶和電阻法)進行溫升測試。
但是非接觸式儀表測溫(紅外測溫方法)可快速提供溫度測量,在用熱電偶讀取一個滲漏連接點的時間內,用紅外測溫儀幾乎可以讀取所有連接點的溫度。另外由于紅外測溫儀堅實、輕巧、安全,它能夠安全地讀取難以接近的或不可到達的目標溫度,你可以在儀器允許的范圍內讀取目標溫度。非接觸溫度測量還可在不安全的或接觸測溫較困難的區域進行,即達到測試的目的又保護了人身安全。希望在不久的將來,標準可以把這種測溫方法列入標準,允許其在某些特定設備和特定場合使用。